177 research outputs found

    Bacterial contamination of table eggs and the influence of housing systems

    Get PDF
    With the introduction of alternative housing systems for laying hens in the EU, recent research has focussed on the bacterial contamination of table eggs, e.g. eggshell and egg content contamination. Contamination of eggshells with aerobic bacteria is generally higher for nest eggs from non-cage systems compared to nest eggs from furnished cages or eggs from conventional cages. Studies indicate limited or no systematic differences in eggshell contamination with aerobic bacteria between eggs laid in the nest boxes of furnished cages and eggs laid in conventional cages. The major differences found in experimental studies between cage- and non-cage systems are less pronounced under commercial conditions. The effect of housing system on eggshell contamination with specific groups of bacteria is variable. Limited information is available on the influence of housing system on egg content contamination. Recent research does not indicate large differences in egg content contamination between eggs from cage- and non-cage systems (ignoring outside nest and floor eggs). The microflora of the eggshell is dominated by Gram-positive bacteria, whereas Gram-negative bacteria are best equipped to overcome the antimicrobial defences of the egg content. Much of the research on eggshell and egg content contamination focuses on Salmonella, since infection with Salmonella enteritidis, resulting from the consumption of contaminated eggs or egg products, is still a major health problem. Observed Salmonella prevalence on the eggshell and in the egg content vary, depending on the fact whether investigations were based on randomly sampled table eggs or on eggs from naturally infected hens. The limited information available on other pathogens shows that they are exclusively isolated from the eggshell and not from the internal contents

    Inhibition of Salmonella Typhimurium by medium chain fatty acids in an in vitro simulation of the porcine caecum

    Get PDF
    To lower the contamination of pork meat with Salmonella, feed additives such as medium chain fatty acids (MCFA\u27s) can be applied at the primary production level. An in vitro continuous culture system, simulating the porcine caecum, was developed for investigating the effect of MCFAs on the pig intestinal microbial community. The system was monitored by plating on selective media, 16S rDNA PCR denaturing gradient gel electrophoresis (PCR-DGGE) and HPLC analysis of fermentation products. In a simulation of the porcine caecum without MCFA treatment, with Salmonella Typhimurium added after stabilization of the microbial community, the strain could establish itself at a stable population size of about 5 log cfu/ml. The effect of selected MCFAs was observed from all monitored parameters and depended on chain length and concentration applied. At a dose of 15 mM, caproate and caprinate did not show any pronounced effect, while a clear Salmonella inhibiting effect (3 log units reduction) was found for caprylate. Doubling the caprylate dose did not result in enhanced Salmonella inhibition

    Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    Get PDF
    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA

    How Thioredoxin Dissociates Its Mixed Disulfide

    Get PDF
    The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx

    Guidance on date marking and related food information: part 2 (food information)

    Get PDF
    A risk-based approach was used to develop guidance to be followed by food business operators (FBOs) when deciding on food information relating to storage conditions and/or time limits for consumption after opening a food package and thawing of frozen foods. After opening the package, contamination may occur, introducing new pathogens into the food and the intrinsic (e.g. pH and aw), extrinsic (e.g. temperature and gas atmosphere) and implicit (e.g. interactions with competing background microbiota) factors may change, affecting microbiological food safety. Setting a time limit for consumption after opening the package (secondary shelf-life) is complex in view of the many influencing factors and information gaps. A decision tree (DT) was developed to assist FBOs in deciding whether the time limit for consumption after opening, due to safety reasons, is potentially shorter than the initial ‘best before’ or ‘use by’ date of the product in its unopened package. For products where opening the package leads to a change of the type of pathogenic microorganisms present in the food and/or factors increasing their growth compared to the unopened product, a shorter time limit for consumption after opening would be appropriate. Freezing prevents the growth of pathogens, however, most pathogenic microorganisms may survive frozen storage, recover during thawing and then grow and/or produce toxins in the food, if conditions are favourable. Moreover, additional contamination may occur from hands, contact surfaces or contamination from other foods and utensils. Good practices for thawing should, from a food safety point of view, minimise growth of and contamination by pathogens between the food being thawed and other foods and/or contact surfaces, especially when removing the food from the package during thawing. Best practices for thawing foods are presented to support FBOs

    Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis

    Get PDF
    B. melitensis is a NIAID Category B microorganism that is responsible for brucellosis and is a potential agent for biological warfare. Here, the solution structure of the 116-residue arsenate reductase-related protein Bm-YffB (BR0369) from this organism is reported

    A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues

    Get PDF
    Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases

    Analysis of the Promoters Involved in Enterocin AS-48 Expression

    Get PDF
    The enterocin AS-48 is the best characterized antibacterial circular protein in prokaryotes. It is a hydrophobic and cationic bacteriocin, which is ribosomally synthesized by enterococcal cells and post-translationally cyclized by a head-to-tail peptide bond. The production of and immunity towards AS-48 depend upon the coordinated expression of ten genes organized in two operons, as-48ABC (where genes encoding enzymes with processing, secretion, and immunity functions are adjacent to the structural as-48A gene) and as-48C1DD1EFGH. The current study describes the identification of the promoters involved in AS-48 expression. Seven putative promoters have been here amplified, and separately inserted into the promoter-probe vector pTLR1, to create transcriptional fusions with the mCherry gene used as a reporter. The activity of these promoter regions was assessed measuring the expression of the fluorescent mCherry protein using the constitutive pneumococcal promoter PX as a reference. Our results revealed that only three promoters PA, P2(2) and PD1 were recognized in Enterococcus faecalis, Lactococcus lactis and Escherichia coli, in the conditions tested. The maximal fluorescence was obtained with PX in all the strains, followed by the P2(2) promoter, which level of fluorescence was 2-fold compared to PA and 4-fold compared to PD1. Analysis of putative factors influencing the promoter activity in single and double transformants in E. faecalis JH2-2 demonstrated that, in general, a better expression was achieved in presence of pAM401-81. In addition, the P2(2) promoter could be regulated in a negative fashion by genes existing in the native pMB-2 plasmid other than those of the as-48 cluster, while the pH seems to affect differently the as-48 promoter expression.This work was supported in part by the Ministerio de Ciencia e Innovación project BIO2008-01708, the Plan Propio from the University of Granada (Spain) and by the Research Plan Group (BIO 160)

    An Atlas of the Thioredoxin Fold Class Reveals the Complexity of Function-Enabling Adaptations

    Get PDF
    The group of proteins that contain a thioredoxin (Trx) fold is huge and diverse. Assessment of the variation in catalytic machinery of Trx fold proteins is essential in providing a foundation for understanding their functional diversity and predicting the function of the many uncharacterized members of the class. The proteins of the Trx fold class retain common features—including variations on a dithiol CxxC active site motif—that lead to delivery of function. We use protein similarity networks to guide an analysis of how structural and sequence motifs track with catalytic function and taxonomic categories for 4,082 representative sequences spanning the known superfamilies of the Trx fold. Domain structure in the fold class is varied and modular, with 2.8% of sequences containing more than one Trx fold domain. Most member proteins are bacterial. The fold class exhibits many modifications to the CxxC active site motif—only 56.8% of proteins have both cysteines, and no functional groupings have absolute conservation of the expected catalytic motif. Only a small fraction of Trx fold sequences have been functionally characterized. This work provides a global view of the complex distribution of domains and catalytic machinery throughout the fold class, showing that each superfamily contains remnants of the CxxC active site. The unifying context provided by this work can guide the comparison of members of different Trx fold superfamilies to gain insight about their structure-function relationships, illustrated here with the thioredoxins and peroxiredoxins
    corecore