717 research outputs found

    Dynamical tunneling in molecules: Quantum routes to energy flow

    Full text link
    Dynamical tunneling, introduced in the molecular context, is more than two decades old and refers to phenomena that are classically forbidden but allowed by quantum mechanics. On the other hand the phenomenon of intramolecular vibrational energy redistribution (IVR) has occupied a central place in the field of chemical physics for a much longer period of time. Although the two phenomena seem to be unrelated several studies indicate that dynamical tunneling, in terms of its mechanism and timescales, can have important implications for IVR. Examples include the observation of local mode doublets, clustering of rotational energy levels, and extremely narrow vibrational features in high resolution molecular spectra. Both the phenomena are strongly influenced by the nature of the underlying classical phase space. This work reviews the current state of understanding of dynamical tunneling from the phase space perspective and the consequences for intramolecular vibrational energy flow in polyatomic molecules.Comment: 37 pages and 23 figures (low resolution); Int. Rev. Phys. Chem. (Review to appear in Oct. 2007

    A transient homotypic interaction model for the influenza A virus NS1 protein effector domain

    Get PDF
    Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD), a short linker, an effector domain (ED), and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand). Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open') in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins

    Prognostic Factors in Arthroplasty in the Rheumatoid Shoulder

    Get PDF
    Total shoulder arthroplasty is commonly considered a good option for treatment of the rheumatoid shoulder. However, when the rotator cuff and glenoid bone stock are not preserved, the clinical outcome of arthroplasty in the rheumatoid patients remains unclear. Aim of the study is to explore the prognostic value of multiple preoperative and peroperative variables in total shoulder arthroplasty and shoulder hemiarthroplasty in rheumatoid patients. Clinical Hospital for Special Surgery Shoulder score was determined at different time points over a mean period of 6.5 years in 66 rheumatoid patients with total shoulder arthroplasty and 75 rheumatoid patients with shoulder hemiarthroplasty. Moreover, radiographic analysis was performed to assess the progression of humeral head migration and glenoid loosening. Advanced age and erosions or cysts at the AC joint at time of surgery were associated with a lower postoperative Clinical Hospital for Special Surgery Shoulder score. In total shoulder arthroplasty, status of the rotator cuff and its repair at surgery were predictive of postoperative improvement. Progression of proximal migration during the period after surgery was associated with a lower clinical score over time. However, in hemiarthroplasty, no relation was observed between the progression of proximal or medial migration during follow-up and the clinical score over time. Status of the AC joint and age at the time of surgery should be taken into account when considering shoulder arthroplasty in rheumatoid patients. Total shoulder arthroplasty in combination with good cuff repair yields comparable clinical results as total shoulder arthroplasty when the cuff is intact

    Victimization and PTSD-like states in an Icelandic youth probability sample

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although adolescence in many cases is a period of rebellion and experimentation with new behaviors and roles, the exposure of adolescents to life-threatening and violent events has rarely been investigated in national probability studies using a broad range of events.</p> <p>Methods</p> <p>In an Icelandic national representative sample of 206 9th-grade students (mean = 14.5 years), the prevalence of 20 potentially traumatic events and negative life events was reported, along with the psychological impact of these events.</p> <p>Results</p> <p>Seventy-four percent of the girls and 79 percent of the boys were exposed to at least one event. The most common events were the death of a family member, threat of violence, and traffic accidents. The estimated lifetime prevalence of posttraumatic stress disorder-like states (PTSD; DSM-IV, APA, 1994 <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>) was 16 percent, whereas another 12 percent reached a sub-clinical level of PTSD-like states (missing the full diagnosis with one symptom). Following exposure, girls suffered from PTSD-like states almost twice as often as boys. Gender, mothers' education, and single-parenthood were associated with specific events. The odds ratios and 95% CI for PTSD-like states given a specific event are reported. Being exposed to multiple potentially traumatic events was associated with an increase in PTSD-like states.</p> <p>Conclusion</p> <p>The findings indicate substantial mental health problems in adolescents that are associated with various types of potentially traumatic exposure.</p

    The NOD/RIP2 Pathway Is Essential for Host Defenses Against Chlamydophila pneumoniae Lung Infection

    Get PDF
    Here we investigated the role of the Nod/Rip2 pathway in host responses to Chlamydophila pneumoniae–induced pneumonia in mice. Rip2−/− mice infected with C. pneumoniae exhibited impaired iNOS expression and NO production, and delayed neutrophil recruitment to the lungs. Levels of IL-6 and IFN-γ levels as well as KC and MIP-2 levels in bronchoalveolar lavage fluid (BALF) were significantly decreased in Rip2−/− mice compared to wild-type (WT) mice at day 3. Rip2−/− mice showed significant delay in bacterial clearance from the lungs and developed more severe and chronic lung inflammation that continued even on day 35 and led to increased mortality, whereas WT mice cleared the bacterial load, recovered from acute pneumonia, and survived. Both Nod1−/− and Nod2−/− mice also showed delayed bacterial clearance, suggesting that C. pneumoniae is recognized by both of these intracellular receptors. Bone marrow chimera experiments demonstrated that Rip2 in BM-derived cells rather than non-hematopoietic stromal cells played a key role in host responses in the lungs and clearance of C. pneumoniae. Furthermore, adoptive transfer of WT macrophages intratracheally was able to rescue the bacterial clearance defect in Rip2−/− mice. These results demonstrate that in addition to the TLR/MyD88 pathway, the Nod/Rip2 signaling pathway also plays a significant role in intracellular recognition, innate immune host responses, and ultimately has a decisive impact on clearance of C. pneumoniae from the lungs and survival of the infectious challenge

    Prevalence of pre- and postpartum depression in Jamaican women

    Get PDF
    BACKGROUND: Maternal depression during pregnancy has been studied less than depression in postpartum period. The aims of this study were to find out the prevalence of prepartum and postpartum depression and the risk factors associated in a cohort of Afro-Jamaican pregnant women in Jamaica. METHODS: The Zung self-rating depression scale instrument was administered to 73 healthy pregnant women at 28 weeks gestation and at 6 weeks postpartum for quantitative measurement of depression. Blood samples were collected at 8, 28, 35 weeks gestation and at day 1 and 6 weeks postpartum to study the thyroid status. RESULTS: Study demonstrated depression prevalence rates of 56% and 34% during prepartum and postpartum period, respectively. 94% women suffering depression in both periods were single. There were significant variations in both FT(3 )and TT(4 )concentrations which increased from week 8 to week 28 prepartum (p < 0.05) and then declined at the 35(th )week (p < 0.05 compared with week 28) and 1 day post delivery study (p < 0.05 compared with week 35). The mean values for TSH increased significantly from week 8 through week 35. The mean values at 1 day postpartum and 6 week postpartum were not significantly different from the 35 week values. For FT(3), TT(4 )and TSH there were no significant between group differences in concentrations. The major determinants of postpartum depression were moderate and severe prepartum depression and change in TT(4 )hormone concentrations. CONCLUSION: High prevalence of depression was found during pre- and postpartum periods. Single mothers, prepartum depression and changes in TT(4 )were factors found to be significantly associated with postpartum depression

    Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-\u3b1 and lipopolysaccaride (LPS). TNF-\u3b1 time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-\u3b1 and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-\u3b1 or LPS challenge, being higher in microglia with TNF-\u3b1 and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-\u3b1 treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases

    Serum amyloid A primes microglia for ATP-dependent interleukin-1\u3b2 release

    Get PDF
    Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1\u3b2 (IL-1\u3b2), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1\u3b2 release is promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with toll-like receptor (TLR) ligands
    corecore