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Expression and Differential 
Responsiveness of Central Nervous 
System Glial Cell Populations to 
the Acute Phase Protein Serum 
Amyloid A
Massimo Barbierato, Mila Borri, Laura Facci, Morena Zusso, Stephen D. Skaper & Pietro Giusti

Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves 
hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA 
immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer’s disease and multiple 
sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical 
astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine 
tumour necrosis factor (TNF)-α and lipopolysaccaride (LPS). TNF-α time-dependently increased Saa1 
(but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for 
microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-α 
and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary 
Saa1 expression profiles following TNF-α or LPS challenge, being higher in microglia with TNF-α 
and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both 
inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted 
astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/ 
neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-α treatment. These last 
data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may 
be a novel approach in the treatment of inflammatory demyelinating disorders like MS.

Inflammation is a physiological process that assumes deleterious consequences if left unchecked1. Chronic 
inflammation underlies the development of pathologies both outside (e.g. rheumatoid arthritis, Crohn’s disease) 
and within (neuropathic pain, traumatic brain injury, spinal cord injury, chronic neurodegenerative disorders) 
the nervous system (‘neuroinflammation’)2. Neuroinflammation contributes importantly to the pathogenesis of 
chronic pain and neuropathic pain3,4, chronic neurodegenerative diseases5,6, neuropsychiatric illness7,8, autism 
spectrum disorder9,10, and probably even temporal lobe epilepsy11.

Inflammation involves the production of numerous mediators including cytokines, chemokines, reactive oxy-
gen species, and acute phase proteins that are responsible for the accompanying physiological and metabolic 
changes. C-reactive protein, complement proteins and serum amyloid A protein (SAA) are some of the principal 
acute phase proteins, that are mainly produced in the liver and released into the systemic circulation in response 
to inflammation12,13. SAA is the generic name of a family of proteins with 103–104 amino acids that share high 
levels of sequence homology but are encoded by different genes14. Humans possess four SAA genes (SAA1, SAA2, 
SAA3 and SAA4) mapped in a 150-kb region of chromosome 11p15.115,16. Mice also have 4 Saa genes, whose pro-
tein products are highly homologous to their human counterparts14. Inducible expression is characteristic of all 
acute-phase SAAs including SAA1 and SAA2. In addition, Saa3 in mice is also an inducible SAA.12. SAA1 protein 
secreted by hepatocytes and released into the circulation is tightly bound to high-density lipoprotein (HDL) par-
ticles. Pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6 and tumour necrosis factor-α (TNF-α), 
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and glucocorticoids may play important roles in hepatic (the main source) expression of SAA1 and SAA2 during 
the acute-phase response17.

Extra-hepatic expression of SAA has also been reported18. Central nervous system (CNS) disorders are char-
acterized by both central activation of innate immunity and activation of a potent peripheral acute phase response 
that influences central inflammation and contributes to poor outcome19. For example, intraperitoneal injection of 
lipopolysaccharide (LPS) in Syrian hamster brain resulted in Saa mRNA expression20. SAA might play a role in 
the inflammatory processes occurring in Alzheimer’s disease (AD) and the autoimmune demyelinating disease 
multiple sclerosis (MS). Although not detectable in normal brain, SAA protein has been described in AD brain, 
along with SAA gene expression in brain tumours and in brain tissue from MS patients21. SAA concentration 
was much higher in cerebrospinal fluid of AD subjects than in normal controls22, and SAA immunoreactivity 
co-localized with amyloid β-peptide deposits in AD brain23. Induction of a systemic acute phase response in SAA 
transgenic mice enhanced amyloid β-peptide deposition24. Intense immunohistochemical staining of SAA in 
brains of patients with neurologically confirmed AD and MS in comparison to an unaffected region and non-AD/
MS brains has been reported, with the major site of SAA staining in both diseases being the myelin sheaths of 
axons in affected cortex25.

The above studies imply a role for SAA in inflammation-associated neuropathologies, but leave unan-
swered important questions, such as the cellular origin(s) of SAA in the CNS and the response of these cells to a 
disease-relevant inflammatory stimulus. The present investigation was designed to compare the response of CNS 
glia, namely astrocytes, microglia and oligodendrocytes to treatment with TNF-α in terms of Saa isoform gene 
expression, alongside an established pro-inflammatory stimulus, namely LPS. Our study also examined a role for 
astrocyte-microglial interaction in their responses to TNF-α. The pathophysiology of a variety of neurological 
disorders, including MS is associated with TNF-α26,27, a master pro-inflammatory product of activated microglia 
and peripheral macrophages implicated in the pathogenesis of CNS demyelination. Increased TNF-α in spinal 
cords coincides with neuropathic pain in rats undergoing experimental autoimmune encephalomyelitis28, and 
transgenic expression of TNF-α within the CNS leads to demyelinating disease29,30. Lastly, we examined whether 
co-ultramicronized palmitoylethanolamide/luteolin (co-ultraPEALut), given its anti-inflammatory and neuro-
protective actions, would affect SAA expression in the above settings.

Results
TNF-α and LPS differentially up-regulate Saa gene expression in cultured cortical microglia 
and astrocytes. SAA mediates cytokine production by a variety of cell types, including macrophages, 
keratinocytes, monocytes, macrophages, neutrophils, THP-1 cells, U937 cells, HMC-1 mast cells, synoviocytes, 
endothelial cells, synovial fibroblasts, and chondrocytes31. However, its expression in defined CNS glial cell pop-
ulations has not been well-documented. To explore this question, purified microglia were treated with TNF-α 
(10 ng/ml) (in line with concentrations used for microglia32 and epithelial cells33 or LPS (100 ng/ml). LPS is the 
major constituent of the outer wall of gram-negative bacteria and ligand for Toll-like receptor 4 (TLR4) and a 
well-established model for induction of an inflammatory response34. At different times over a 24-h period micro-
glia were processed for qRT-PCR, and mRNA expression for the different Saa isoforms evaluated. TNF-α and 
LPS each caused a time-dependent rise in Saa1 gene expression, being significantly greater compared to control at 
6 and 24 h (Fig. 1a). At 24 h the effect of TNF-α was more robust than that of LPS. TNF-α treatment did not lead 
to any consistent changes in Saa3 expression (Fig. 1b). Saa1 remained elevated up to 6 days with either TNF-α or 
LPS challenge, but significantly higher with TNF-α (Supplementary Fig. S1a). The very low expression of Saa4 
mRNA rendered impractical a reliable measure of this isoform (data not shown). Microglia responded to LPS 
with a time-dependent increase in IL-1β in the culture medium (78.4 ± 3.0, 275.2 ± 19.4 and 514.8 ± 19.8 pg/ml, 
respectively, at 3, 6 and 24 h; values are mean ± s.e.m., n = 3); however, TNF-α treatment failed to elicit release of 
detectable amounts of this cytokine. Basal release of IL-1β was below the assay’s limit of detection.

Enriched cortical astrocytes (<5% contaminating microglia; see Methods) incubated with TNF-α or LPS 
displayed also a significant and time-dependent rise in Saa1 gene expression over 24 h, with the effect of LPS 
being greater than that of TNF-α (Fig. 2a). Neither TNF-α nor LPS affected Saa3 gene expression (Fig. 2b). 
As with microglia, very low levels of Saa4 made its measurement impractical. At longer times, and in contrast 
to microglia, the relative expression of Saa1 gene continued to rise until at least 6 days (longest time exam-
ined) in TNF-α-treated astrocyte cultures and were significantly higher than for LPS-treated cells at this time 
(Supplementary Fig. S1b) – as seen for microglia. These data suggest that microglia display distinct responses to 
TNF-α and LPS as a function of the presence of astrocytes.

TNF-α (10 ng/ml) increased Saa1 gene expression in oligodendrocytes precursor cells (OPCs) in a 
time-dependent fashion, being significantly greater than control at 6 and 24 h (Supplementary Fig. S2a). There 
were no statistically significant changes in Saa3 gene expression (Supplementary Fig. S2b), even though expres-
sion of Saa3 mRNA in control cultures was higher than for Saa1. Expression of Saa4 mRNA was borderline 
detectable (data not shown). TNF-α, at the concentration used was not toxic to OPCs in the present experiments, 
as noted by others35. Effects of LPS were not examined in OPCs, as these cells do not express the LPS receptor 
TLR436,37.

Leu-Leu-OMe (L-LME) treatment of enriched astrocytes prevents induction of Saa1 mRNA in 
response to TNF-α and LPS: effect of microglia re-addition. Rodent primary astrocyte cell cultures 
prepared by standard protocols, including those used here generally contain variable, small percentages (up to 
5%) of contaminating microglia38. Inflammatory mediator output from enriched astrocytes is dependent on the 
presence of residual microglia39–43. To interrogate the role of microglia in our cultures of enriched astrocytes, 
the lysosomotropic agent L-LME41 was employed to eradicate any remaining microglia41,42,44–47. Monolayers 
of enriched astrocytes were treated by a 60-min exposure to 50 mM-LME followed 24 h later by a 6-h or 24-h 

http://S1a
http://S1b
http://S2a
http://S2b


www.nature.com/scientificreports/

3Scientific RepoRtS | 7: 12158  | DOI:10.1038/s41598-017-12529-7

challenge with either TNF-α or LPS (Fig. 3a and b, respectively). Under these conditions L-LME treatment largely 
eliminated the responsiveness of enriched astrocytes to both stimuli. Under these conditions L-LME is not toxic 
to astrocytes40–42,46.

CNS microglia respond to an inflammatory challenge more robustly in the presence of astrocytes41,42. To 
determine if this is the case also for Saa1 mRNA induction, purified microglia were re-introduced into cultures 
of L-LME-treated astrocytes. After allowing one day for attachment, cultures were challenged with either 10 ng/
ml TNF-α or 100 ng/ml LPS and then processed for qRT-PCR 6 h (Fig. 3a) and 24 h (Fig. 3b) later. Relative 
expression of Saa1 mRNA was significantly higher upon stimulation by LPS as compared to TNF-α (see also 
Fig. 2 and Supplementary Fig. S1b). L-LME treatment markedly diminished astrocyte responsiveness to the two 
stimuli at both time points. Assuming 4% impurity of astrocytes prior to L-LME (equivalent to 10,000 microglia 
for an astrocyte plating density of 250,000 cells per 24-well), 5,000, 10,000 and 20,000 microglia were added to 
the nominally microglia-free astrocytes. Incubation of such microglia/astrocyte ‘co-cultures’ with either TNF-α 
or LPS, although displaying significantly greater relative expression of the Saa1 gene compared to L-LME-treated 
astrocytes alone did not reach values achieved with enriched astrocytes (Fig. 3a and b, respectively). In keeping 
with the behaviour of enriched astrocytes, Saa1 gene expression was significantly higher at both 6 h and 24 h in 
reconstituted co-cultures challenged with LPS in comparison to TNF-α (again, see Supplementary Fig. 1b). In 
contrast, the same numbers of microglia cultured alone were more responsive to TNF-α as compared to LPS at 
24 h (Fig. 3c) (see also Fig. 1a and Supplementary Fig. 1a).

Removal of residual microglia from enriched astrocytes effectively neutralized their ability to release 
IL-1β into the culture medium in response to LPS. Reintroduction of microglia (5,000–20,000) to nominally 
microglia-free astrocyte cultures did not restore LPS responsiveness, nor did the same numbers of microglia 
alone elaborate measureable quantities of IL-1β upon incubation with LPS. Increasing the number of microglia to 
250,000, while producing quantifiable amounts of IL-1β in response to stimulation by LPS failed to reach values 
obtained with enriched astrocytes (data not shown).

Figure 1. Treatment of rat cortical microglia with TNF-α or LPS up-regulates, in a time-dependent manner 
mRNA for Saa1 but not Saa3. (a) SAA1; (b) SAA3. Cultures of microglia were treated the day after plating 
(DMEM + 0.5% FCS) with 10 ng/ml TNF-α or 100 ng/ml LPS and processed 1, 3, 6 and 24 h later for qRT-PCR, 
as detailed in Methods. Data are presented as relative expression level (normalized with respect to β-actin 
(βACT)) at each time point for the control (untreated) cultures and are means ± s.e.m. n = 6. *p < 0.05 vs 
control (CTRL); **p < 0.01 vs control; ***p < 0.001 vs control. #p < 0.05 vs control and TNF-α; ##p < 0.01 vs 
control and TNF-α; ###p < 0.001 vs control.
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SAA stimulates production of inflammatory mediators as well as its own mRNA in microglia 
and in enriched, but not microglia-depleted astrocytes. SAA stimulation of cells results in tran-
scriptional activation leading to increased levels of pro-inflammatory cytokines like IL-1β, TNF-α48 and nitric 
oxide (NO)49. These pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) play important roles in hepatic expression 
of SAA1 and SAA2 during the acute-phase response17. Further, genetic deletion of the Il-1β gene leads to an 
impaired acute-phase inflammatory response in mice50, while deletion of the Il-6 gene results in a compromised 
acute-phase response to tissue injury51.

Treatment of enriched cortical astrocytes with increasing concentrations of recombinant human Apo-SAA 
(consensus SAA molecule corresponding to human Apo-SAA1α, except for the presence of an N-terminal 
methionine, the substitution of asparagine for aspartic acid at position 60, and arginine for histidine at position 
71) for 24 h stimulated the production of IL-1β, TNF-α and NO (Fig. 4a, b and c, respectively). LPS, as expected, 
was also efficacious. In contrast, astrocytes depleted of microglia by treatment with L-LME were unresponsive 
(data not shown). Likewise, incubation of purified cortical microglia with Apo-SAA for 24 h induced the produc-
tion of TNF-α, IL-1β and NO (Fig. 5a, b and c, respectively), as did LPS.

The actions of SAA are thought to depend on engagement of TLR449. To explore this possibility in our cul-
tures we used CLI-095, also known as TAK-242, a novel cyclohexene derivative that suppresses specifically TLR4 
signalling, inhibiting the production of NO and pro-inflammatory cytokines52. It acts by blocking the signal-
ling mediated by the intracellular domain of TLR4, but not the extracellular domain, and potently suppresses 
both ligand-dependent and -independent signalling of TLR453. Treatment of rat cortical enriched astrocytes 
with CLI-095 (0.5 µg/ml) (in line with effective concentrations used for microglia54 and macrophages52) essen-
tially abolished the release of both TNF-α (Fig. 6a) and NO (Fig. 6b) in cells stimulated with either recombinant 
human Apo-SAA or LPS, thus confirming that the effects of SAA and LPS are dependent on activation of TLR4. 
Polymyxin B, which prevents LPS binding to TLR455 blocked the effects of LPS but not Apo-SAA in microglia 
(Supplementary Fig. S3). Treatment of enriched cortical astrocytes and purified microglia with recombinant 
human Apo-SAA for 24 h up-regulated also expression of Saa1 mRNA itself (Fig. 7a and b, respectively) as did 

Figure 2. Treatment of enriched rat cortical astrocytes with TNF-α or LPS up-regulates, in a time-dependent 
manner mRNA for Saa1 but not Saa3. (a) SAA1; (b) SAA3. Cultures were treated the day after plating 
(DMEM + 0.5% FCS) with 10 ng/ml TNF-α or 100 ng/ml LPS and processed 1, 3, 6 and 24 h later for qRT-PCR, 
as detailed in Methods. Data are presented as relative expression level (normalized with respect to β-actin 
(βACT)) at each time point for the control (untreated) cultures and are means ± s.e.m. n = 3. ***p < 0.001 vs 
control; ###p < 0.001 vs control and TNF-α.
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LPS (see also Fig. 3). CLI-095 (0.5 µg/ml) markedly reduced the up-regulation of Saa1 gene in astrocytes stimu-
lated with either recombinant human Apo-SAA or LPS (Fig. 7a), thus confirming that the effects of SAA and LPS 
are dependent on activation of TLR4. These data suggest possible autocrine/paracrine effects of SAA.

Figure 3. Addition of microglia to L-leucyl-L-leucine methyl ester (L-LME)-treated astrocytes fails to fully 
restore TNF-α and LPS-induced increases in Saa1 mRNA. Enriched cortical astrocytes (250,000 per 24-well) 
were treated with 50 mM L-LME for 60 min, and returned to fresh culture medium for 24 h. After this time 
(medium change to DMEM + 0.5% FCS) purified cortical microglia were added, at the numbers indicated on 
the horizontal axis (+5 K, + 10 K, + 20 K, + 250 K) to the astrocyte cultures and incubation continued for a 
further 24 h. Cultures were then challenged with either 10 ng/ml TNF-α or 100 ng/ml LPS and cells processed 
for Saa1 mRNA expression by qRT-PCR 6 h (a) and 24 h (b) later. Data are presented as relative expression 
level (normalized with respect to β-actin (βACT)) at each time point and are means ± s.e.m. n = 3. *p < 0.05 
vs control (CTRL); **p < 0.01 vs control; ***p < 0.001 vs control. ##p < 0.01 vs TNF-α; ###p < 0.001 vs TNF-
α. Similar results were obtained in a second experiment. (c) The same numbers of microglia were cultured 
in a parallel 24-well plate and subjected to the same treatments as above and then processed for Saa1 mRNA 
expression by qRT-PCR at 24 h. For comparison, samples plated with 250,000 microglia per well were also 
analyzed. Data are presented as relative expression level (normalized with respect to β-actin (βACT)) and are 
means ± s.e.m. n = 3. ***p < 0.001 vs all other cell densities; ###p < 0.001 vs TNF-α.
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Co-ultraPEALut limits TNF-α-induced Saa1 gene expression in OPCs. N-palmitoylethanolamine, 
an endogenous fatty acid amide signalling molecule possesses analgesic, anti-inflammatory, and neuropro-
tective actions56–58. Recent studies show a co-ultramicronized composite of PEA and the flavonoid luteolin 
(co-ultraPEALut, 10:1 by mass) to be more efficacious that PEA alone in improving outcome in CNS injury 
models58–63. Co-ultraPEALut also promoted the biochemical and morphological development of OPCs cul-
tured under conditions favouring either differentiation64 or proliferation63. To examine the possible effect of 
co-ultraPEALut on TNF-α-stimulated Saa1 mRNA, OPCs were cultured in either Sato medium or SFM in the 
presence of TNF-α ± 10 µM co-ultraPEALut. The concentration of co-ultraPEALut was chosen based on our ear-
lier studies examining the effects of this formulation on maturation of cultured OPCs64. Under these conditions, 

Figure 4. Recombinant human Apo-SAA or LPS treatment of rat cortical enriched astrocytes for 24 h increases 
the production of IL-1β (a), TNF-α (b) and NO (c). Cultures were treated the day after plating (DMEM + 0.5% 
FCS) with 0.5 or 1.5 μg/ml recombinant human Apo-SAA (Apo-SAA) or 100 ng/ml LPS and culture medium 
collected 24 h later for measurement of TNF-α, IL-1β by ELISA and NO by Griess reaction, as detailed in 
Methods. Data are expressed as means ± s.e.m. n = 3. ***p < 0.001 vs control (CTRL). ##p < 0.01 vs 1.5 µg/ml 
Apo-SAA; ###p < 0.001 vs 1.5 µg/ml Apo-SAA.
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co-ultraPEALut significantly reduced the increase in Saa1 mRNA relative expression induced by TNF-α after 6 
days (Fig. 8a, b, respectively). No effects of co-ultraPEALut were observed in OPCs at shorter (1–2 days) incuba-
tion times or in enriched astrocytes after 6 days (data not shown).

Discussion
Extensive evidence indicates that CNS disorders are primarily characterized by central activation of innate immu-
nity, as well as activation of a potent peripheral acute phase response that influences central inflammation and 
leads to poor disease outcome19. The acute phase response plays a critical role in the innate immune response 
to tissue injury65. The present study was designed to investigate the cellular origin(s) of the acute phase protein 
SAA in the CNS, focusing on glia and their responses to disease-relevant inflammatory stimuli. Treatment of rat 
cortical purified microglia, enriched astrocytes, and OPCs with the pro-inflammatory cytokine TNF-α (as well as 

Figure 5. Recombinant human Apo-SAA or LPS treatment of purified rat cortical microglia for 24 h increases 
the production of TNF-α (a), IL-1β (b), and NO (c). Cultures were treated the day after plating (DMEM + 0.5% 
FCS) with 1.5 μg/ml recombinant human Apo-SAA (Apo-SAA) or 100 ng/ml LPS and culture medium collected 
24 h later for measurement of TNF-α, IL-1β by ELISA and NO by Griess reaction, as detailed in Methods. Data 
are expressed as means ± s.e.m. n = 3. ***p < 0.001 vs control (CTRL). ##p < 0.01 vs 1.5 µg/ml Apo-SAA.
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the first two cell populations with LPS) led to a time-dependent increase in mRNA expression of the SAA isoform 
Saa1. Isoform Saa3 was unchanged, while Saa4 (a constitutive form of SAA secreted by all cell types17) remained 
below the limits of detection. Depletion of residual microglia from enriched astrocytes markedly diminished 
the latter’s response to TNF-α and LPS, which could not be recovered by re-introduction of purified microglia. 
Microglia and enriched astrocytes showed distinct profiles when treated with TNF-α or LPS: Saa1 relative expres-
sion in microglia was higher for TNF-α treatment as compared to LPS, with the opposite being true for enriched 
astrocytes or when microglia were re-added to microglia-depleted astrocytes. Recombinant human Apo-SAA 
stimulated production of not only inflammatory mediators but also its own mRNA in microglia and in enriched, 
but not microglia-depleted astrocytes. Further, co-ultraPEALut, an anti-inflammatory and neuroprotective agent, 
reduced Saa1 gene expression in OPCs, but not enriched astrocytes, subjected to prolonged TNF-α treatment.

Our data are consistent with and extend earlier observations demonstrating that microglia responsiveness to 
a pro-inflammatory stimulus is enhanced when cultured with astrocytes41,42. In keeping with these prior reports, 
re-introduction of microglia to microglia-depleted astrocytes was insufficient to restore full responsiveness. In 
this context of microglia-astrocyte interaction it is interesting to note that relative expression of Saa1 mRNA 
differed as a function of two factors: stimulation with TNF-α versus LPS and the response of microglia cultured 
alone or in the presence of astrocytes. The molecular basis for this interaction remains to be elucidated, although 
it does not appear to involve release of a soluble factor(s) by astrocytes41,66.

Rats do not develop amyloidosis and SAA is not an apoprotein of rat HDL. However, rats do have represent-
atives of the SAA gene family; moreover, the pattern of genes expressed among tissues, and their induction by 
inflammatory agents, is similar to that of the related mouse genes67. This lends support for the importance of the 
SAA gene family in the response to injury by vertebrates, be they rodent or human.

SAA may activate TLR248 and TLR449, despite having little structural resemblance to the bacteria-derived 
ligands of either receptor. Commercially available SAA forms are recombinant proteins expressed in Escherichia 
coli, and the question rises whether contamination with LPS may account for some of its biological effects. We 
assessed this possibility by using CLI-095, a compound known to suppress specifically TLR4 signalling52 by 
blocking signalling mediated by the intracellular, but not extracellular, domain of TLR453. Treatment of rat cor-
tical enriched astrocytes and purified microglia with CLI-095 largely prevented the release of TNF-α and NO in 
cells stimulated with either recombinant human Apo-SAA or LPS, thus confirming that the effects of Apo-SAA 
and LPS are dependent solely on activation of TLR4. Polymyxin B, a cationic cyclic lipopeptide that binds stoi-
chiometrically to the lipid A moiety of LPS and blocks its biological effects55 blocked the effects of LPS but not 
Apo-SAA. This result suggests that, at least in rat CNS glia under the present conditions recombinant human 

Figure 6. CLI-095 abolishes Apo-SAA- and LPS-stimulated production of TNF-α (a) and NO (b) by rat 
cortical enriched astrocytes (▓ ) and purified microglia (■) treated with recombinant human Apo-SAA or LPS 
for 24 h. Cultures were treated the day after plating (DMEM + 0.5% FCS) with 0.5 or 1.5 μg/ml recombinant 
human Apo-SAA ('SAA') or 100 ng/ml LPS, together with 0.5 μg/ml CLI-095 (‘CLI’). Culture medium was 
collected 24 h later for measurement of TNF-α (a) and NO (b) ELISA, as detailed in Methods. Data are 
expressed as means + s.e.m. n = 3. ***p < 0.001 vs control (CTRL). Similar results were obtained in a second 
experiment.
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Apo-SAA mediates its effects through TLR4 but not TLR2, even though rat microglia41,42 and oligodendrocytes68 
reportedly express functional TLR2.

SAA can be considered a “danger signal” that influences the inflammation process69, being produced when 
mammals sense potentially harmful environmental cues, including trauma, infection, tumour growth, surgery, 
and severe stress. Its low basal level and high inducibility are in keeping with danger signal molecules70. Given its 
chemotactic and cytokine-inducing activities, SAA may profoundly affect innate immunity. Its ability to activate 
TLR2 and TLR4 is of particular interest given that these pathogen-associated molecular patterns have important 
functions in innate immunity and inflammation and that their genetic variants are closely related to the disposi-
tion of several inflammatory and metabolic diseases featuring elevated SAA production71.

Inflammation is a key feature in the pathogenesis of many chronic peripheral and CNS pathologies. The SAA 
gene is reported to be expressed in brain of AD patients, individuals with brain tumours and MS, but not in 
brain from Pick’s disease, dementias with Lewy bodies or internal carotid infarct21. SAA has been documented 
immunohistochemically to co-localize with amyloid β-peptide deposits in AD brain23. SAA levels in cerebro-
spinal fluid (CSF) of AD subjects are much higher than in normal controls22, and generally within the range 
of the highest concentration used here. Induction of a systemic acute phase response in SAA transgenic mice 
reportedly enhanced deposition of amyloid β-peptide24. CSF-HDL is rich in apoE, and plays an important role 
as a ligand for lipoprotein receptors in CNS. Interestingly, addition of recombinant SAA to CSF dissociates apoE 
from CSF-HDL22. Because amyloid β-peptide binds to large CSF-HDL but not to apoE the authors postulated 
that inflammation in the CNS may impair amyloid clearance due to loss of apoE from CSF-HDL. Intriguingly, 
over-expression of SAA1 induces depressive-like behaviour in mice72. As SAA contains a cholesterol binding 
site near its amino terminus it is likely to have a high affinity for cholesterol-rich myelin. SAA can inhibit lipid 
synthesis in vascular smooth muscle cells73, and it is conceivable that SAA similarly inhibits lipid synthesis in 
oligodendrocytes and/or neurons. This inhibition may play a role in the white matter damage seen in both AD74 
and MS75. The recent report that SAA induces inflammatory cytokine production in cultured cortical astrocytes 
(>95% purity) leaves open the question as to whether this is not a consequence of contaminating microglia76.

Building on our initial observations showing that a co-ultramicronized composite of the fatty acid amide PEA 
and the flavonoid luteolin promotes the morphological and molecular maturation of differentiating OPCs64 and 
improves the clinical score in myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoim-
mune encephalomyelitis in female C57BL/6 mice (a model often used as a chronic first-pass model of MS)63, we 
now demonstrate that co-ultraPEALut significantly limits the rise in Saa1 gene expression in OPCs subjected to 
a 1-week exposure to TNF-α.

Figure 7. Treatment of rat cortical enriched astrocytes (a) and purified microglia (b) with recombinant human 
Apo-SAA or LPS for 24 h up-regulates expression of Saa1 mRNA. Cultures were treated the day after plating 
(DMEM + 0.5% FCS) with the indicated concentrations (μg/ml) of recombinant human Apo-SAA ('SAA') (a,b) 
or 100 ng/ml LPS (a), together with 0.5 μg/ml CLI-095 (‘CLI’) (where indicated) (a) and processed 24 h later 
for qRT-PCR, as detailed in Methods. Data are presented as relative expression level (normalized with respect 
to β-actin (βACT)) and are means ± s.e.m. n = 3. *p < 0.05 vs control (CTRL); ***p < 0.001 vs CTRL. Similar 
results were obtained in a second experiment.
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In conclusion, the present findings demonstrate that cortical oligodendrocytes, astrocytes and microglia 
respond to the pro-inflammatory cytokine TNF-α by an up-regulation of the acute phase protein SAA1, with 
the latter two cell types engaging in a crosstalk that reinforces the activation of microglia. Recombinant human 
Apo-SAA also stimulated up-regulation of its own gene, proposing autocrine/paracrine action and the existence 
of a feed-forward mechanism whereby release of TNF-α by activated microglia up-regulates SAA1 expression by 
nearby oligodendrocytes via type 1 TNF-α77 receptors (OPCs reportedly transcribe nearly undetectable levels of 
the type 2 receptor77) to further stimulate microglia, resulting in a ‘vicious cycle’. One cannot exclude the partic-
ipation of type 2 receptors, however, as another study claimed that in normal adult rat brain oligodendrocytes 
express TNF‐type 2 but not type 1 receptor; after 3 days in culture, both types of receptors were expressed by 
mature oligodendrocytes78. However, it would be impractical (and rather beyond the scope of the present study) 
to evaluate TNF receptor subtype involvement in these experiments. In every case, these observations may have 
particular relevance in the pathophysiology of autoimmune demyelinating diseases, including MS, where TNF-α 
appears to play a prominent role26–28,79. Collectively, past and current data propose that co-ultraPEALut may be 
a novel approach in the treatment of inflammatory demyelinating disorders, as well as in other CNS pathologies 
classically viewed as primarily neuronal diseases but where myelin and oligodendrocyte loss are also relevant.

Methods
Materials. Tissue culture media, N2 supplement, antibiotics and fetal calf serum (FCS) were obtained 
from Life Technologies (San Giuliano Milanese, Italy); poly-D-lysine hydrobromide (mol wt 70,000–150,000), 
poly-L-lysine hydrobromide (mol wt 70,000–150,000), cytosine β-D-arabinoside, 3,3′,5-triiodo-L-thyronine, 
L-thyroxine, lipopolysaccharide (LPS; Ultra-Pure LPS-EB from E. coli 0111:B4 strain) and ethyl-(6 R)-6-(N-(2-
chloro-4-fluorophenyl)sulfamoyl)cyclohex-1-ene-1-carboxylate (CLI-095 or TAK 242) were from InvivoGen 
(Cayla-Invivogen Europe, Toulouse, France), Griess reagent, papain, DNase I (bovine pancreas), trypsin inhibi-
tor, L-LME, recombinant human fibroblast growth factor-2 (FGF2), recombinant rat TNF-α (T5944, cell culture 
tested, endotoxin level <0.1 ng/µg as determined by the Limulus amebocyte lysate method), recombinant human 

Figure 8. Co-ultramicronized PEA/luteolin (co-ultraPEALut) reduces Saa1 gene expression in TNF-α-treated 
oligodendrocyte progenitor cells (OPCs) cultured in either Sato medium (a) or SFM (b). Isolated rat cortical 
OPCs were plated in Sato medium (without T3 and T4). One hour later this medium was replaced with either 
Sato medium or SFM. The following day, as indicated, co-ultraPEALut (‘PEALut’) was added (10 µM final) 
followed by TNF-α (final concentration: 10 ng/ml). Cells were processed 6 days later for qRT-PCR. Control 
(CTRL): culture medium with vehicle only. Data are means ± s.e.m. (a): n = 8 (3 experiments); (b): n = 12 (4 
experiments). *p < 0.05 vs TNF-α. In a separate set of experiments, OPCs were treated as above and collected 
after 7 days. SFM: TNF-α (0.067 ± 0.010) and TNF-α + PEALut (0.039 ± 0.006) (n = 5, **p < 0.01); Sato 
medium: TNF-α (0.043 ± 0.016) and TNF-α + PEALut (0.018 ± 0.005) (n = 4).
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platelet-derived growth factor AA and all other biochemicals were purchased from Sigma-Aldrich (Milan, Italy) 
unless noted otherwise; recombinant human Apo-SAA (consensus SAA molecule corresponding to human Apo-
SAA1α, except for the presence of an N-terminal methionine, the substitution of asparagine for aspartic acid 
at position 60, and arginine for histidine at position 71) from Peprotech (London, UK); Falcon tissue culture 
plasticware was purchased from BD Biosciences (SACCO srl, Cadorago (CO), Italy). Sterilin petri plastic dishes 
(10 cm Ø) were from Sarstedt (Verona, Italy). Co-ultramicronized PEA/luteolin (10:1 mass ratio) was kindly 
provided by Epitech S.p.A., Saccolongo (PD), Italy.

Primary culture of microglia and astrocytes. Microglia were isolated from mixed glial cell cultures as 
previously described80. Experiments were performed in accordance with Italian Ministry of Health (art. 31, D.L. 
26/2014) guidelines for the care and use of laboratory animals, and were approved by the Institutional Animal 
Care and Use Committee of the University of Padua (958/2016-PR). Briefly, cells dissociated from P1-P2 rat pup 
(strain: CD) cerebral cortices were plated in 75-cm2 poly-L-lysine-coated tissue culture flasks (1.5 brains per 
flask) and grown in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) with 2 mM glutamine, 50 units/
ml penicillin/50 μg/ml streptomycin, 50 µg/ml gentamycin and 10% FCS (glial cell growth medium). Culture 
medium was changed after 24 h. The cultures reached confluence by 7 days at which time microglia were recov-
ered by shaking the flasks on an orbital shaker at 200 rpm for 1 h (37 °C). The attached cell monolayers were 
highly enriched in astrocytes (<5% microglia, as determined by flow cytometry using cell type-specific antibod-
ies)66. The culture supernatant containing microglia was transferred to plastic Petri dishes (Sterilin) and incubated 
for 45 min at 37 °C (5% CO2, 95% air) to allow differential adhesion of microglia. The adherent microglial cells 
(>99% pure, as determined by flow cytometry using cell type-specific antibodies)66 were detached by mechani-
cally scraping into glial cell growth medium and replated in this same medium, on poly-L-lysine-coated microw-
ell culture plates or dishes. The flaskswere re-fed with fresh medium (12 ml/flask) and returned to the incubator 
for another 7 days. These will be used to collect OPCs (following section).

For experiments where microglia were added back to microglia-depleted astrocyte cultures, microglia on 
Sterilin dishes were maintained in growth medium for a further 2 days until harvest. In some cases astrocytes 
were depleted of residual microglia using a 60-min exposure (50 mM) to the lysosomotropic agent L-LME46, as 
described previously41. Culture medium was exchanged for fresh medium, andcells allowed to recover for 1 day 
in growth medium prior to experimentation.

Primary culture of oligodendrocyte precursor cells. Flasks used for collection of microglia and 
astrocytes were subjected to a second cycle of rotary shaking (6 h); the culture supernatant was subsequently 
transferred to plastic Sterilin Petri dishes and incubated for 45 min at 37 °C (5% CO2/95% air) to allow differ-
ential adhesion of any remaining microglia. The final cell suspension (containing >96% oligodendrocytes81) 
was collected and centrifuged (200 g, 5 min). The resulting cell pellet was re-suspended in serum-free medium 
(DMEM containing 1x N2 supplement, 50 U/ml penicillin and 50 μg/ml streptomycin, 0.5% (v/v) FCS) at 75,000 
or 150,000 cells per well in a 24-well plate coated with poly-D-lysine and left at room temperature for 30 min to 
allow for uniform cell attachment/distribution82, followed by 30 min at 37 °C (5% CO2/95% air). The medium was 
then changed to one of the following (1 ml/well): ‘differentiation’ medium [Sato medium (DMEM supplemented 
to contain 400 ng/ml 3,3′,5-triiodo-L-thyronine, 400 ng/ml L-thyroxine, 2 mM-glutamine, 50 U/ml penicillin and 
50 μg/ml streptomycin, 1x N2 supplement) and 0.5% (v/v) FCS] for cultures plated at 150,000 cells/well; ‘prolif-
eration’ medium (‘SFM’) (DMEM containing 1x N2 supplement, 20 nM hydrocortisone, 10 ng/ml D-biotin, 5 ng/
ml FGF2, 5 ng/ml PDGF-AA, 0.1% (w/v) bovine serum albumin) for cultures plated at 75,000 cells/well. Cultures 
were maintained at 37 °C in a 5% CO2/95% air incubator. After 24 h cytosine β-D-arabinoside (10 μM; to inhibit 
growth of any residual astrocytes) was added to cultures in Sato medium.

Culture treatments. Microglia and astrocytes were seeded in poly-L-lysine-coated 24-well plates at a den-
sity of 250,000 cells per well, using glial cell growth medium and allowed to adhere overnight. Twenty-four hours 
later cells were then incubated with TNF-α (10 ng/ml) or LPS (100 ng/ml) in either ‘proliferation’ medium or Sato 
medium for the times indicated in each experiment, then processed for qRT-PCR analysis. Culture supernatants 
were retained and stored at −20 °C for analysis of IL-1β, TNF-α and NO contents. OPCs, cultured in either SFM 
(75,000 cells/24-well) or Sato medium (150,000 cells/ml) were treated with TNF-α (10 ng/ml) either on the day 
of plating or the following day. After different times of incubation, as indicated in each experiment, cells were 
processed for qRT-PCR analysis.

Preparation of co-ultramicronized PEA/luteolin solutions. Co-ultramicronized PEA/luteolin was 
prepared as a 5 mM stock solution in 10% (w/v) Pluronic F-68. Concentration was calculated based on the 
molecular weight of PEA (the co-ultramicronized PEA/luteolin composite contains PEA and luteolin in a 10:1 
mass ratio). The co-ultramicronized PEA/luteolin solution was sonicated for 20 min in a Elmasonic S (Singen, 
Germany) sonicating water bath. The co-ultramicronized PEA/luteolin solution was then diluted into culture 
medium at 100x the desired final concentration, and added (10 µl/1 ml) directly to the cell cultures without 
exchange of medium. The concentration of Pluronic F-68 was maintained constant at 0.02%, and added to the 
control culture wells also. After 30 min incubation co-ultramicronized PEA/luteolin was added, as above.

qRT-PCR. Total RNA was extracted from cells by TRIzol® (Invitrogen), according to the manufacturer’s 
instructions. RT was performed with Superscript III reverse transcriptase (Invitrogen). The qRT-PCR reaction 
was performed as described previously41. Primer sequences are listed in Table 1. Amounts of each gene product 
were calculated using linear regression analysis from standard curves, demonstrating amplification efficiencies 
ranging from 90 to 100%. Dissociation curves were generated for each primer pair, showing single product ampli-
fication. Data are normalized to β-actin mRNA level.
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Enzyme-linked immunosorbent assays (ELISA) for IL-1β and TNF-α. IL-1β and TNF-α contents 
of culture medium were analyzed using commercially available enzyme-linked immunosorbent assay (ELISA) 
kits according to the manufacturer’s instructions (Antigenix America, Huntington Station, NY, USA). Standards 
with known amounts of IL-1β and TNF-α were used to convert values into absolute concentrations of IL-1β and 
TNF-α in pg/ml.

NO Assay. NO has a relatively short half-life. Hence, quantitative assessment of NO production has generally 
relied on the indirect measurement of its oxidized products, nitrite and nitrate, which are regarded as suitable 
markers of NO generation. Equal volumes of cell culture medium and Griess reagent (Sigma-Aldrich) were incu-
bated for 15 min, and the amount of nitrite quantified using a standard curve of sodium nitrite at O.D. 540 nm.

Statistics. Data are given as mean ± s.e.m. (standard error of the mean). Statistical analyses to determine 
group differences were performed either by two-sample equal variance Student’s t test, or by one-way analysis 
of variance, followed by Dunnett’s or Bonferroni’s post-hoc test for comparisons involving more than two data 
groups.

Data Availability. The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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