268 research outputs found

    Bird pollinators, seed storage and cockatoo granivores explain large woody fruits as best seed defense in Hakea

    Get PDF
    Nutrient-impoverished soils with severe summer drought and frequent fire typify many Mediterranean-type regions of the world. Such conditions limit seed production and restrict opportunities for seedling recruitment making protection from granivores paramount. Our focus was on Hakea, a genus of shrubs widespread in southwestern Australia, whose nutritious seeds are targeted by strong-billed cockatoos. We assessed 56 Hakea species for cockatoo damage in 150 populations spread over 900 km in relation to traits expected to deter avian granivory: dense spiny foliage; large, woody fruits; fruit crypsis via leaf mimicry and shielding; low seed stores; and fruit clustering. We tested hypothesises centred on optimal seed defenses in relation to (a) pollination syndrome (bird vs insect), (b) fire regeneration strategy (killed vs resprouting) and (c) on-plant seed storage (transient vs prolonged).Twenty species in 50 populations showed substantial seed loss from cockatoo granivory. No subregional trends in granivore damage or protective traits were detected, though species in drier, hotter areas were spinier. Species lacking spiny foliage around the fruits (usually bird-pollinated) had much larger (4–5 times) fruits than those with spiny leaves and cryptic fruits (insect-pollinated). Species with woody fruits weighing >1 g were rarely attacked, unlike those with spiny foliage and small cryptic fruits. Fire-killed species were just as resistant to granivores as resprouters but with much greater seed stores. Strongly serotinous species with prolonged seed storage were rarely attacked, with an order of magnitude larger fruits but no difference in seed store compared with weakly/non-serotinous species. Overall, the five traits examined could be ranked in success at preventing seed loss from large woody fruits (most effective), fruit clustering, low seed stores, spinescence, to crypsis (least effective). We conclude that the evolution of large woody fruits is contingent on pollinator type (dictates flower/fruit location, thus apparency to granivores), level of serotiny (response to poor soils and fire that requires prolonged seed defense) and presence of a formidable granivore (that promotes strong defense)

    Fire as a Selective Agent for both Serotiny and Nonserotiny Over Space and Time

    Get PDF
    Acceptance date approximate as author was not able to supply

    Coral restoration can drive rapid reef carbonate budget recovery (article)

    Get PDF
    This is the final version. Available on open access from Cell Press via the DOI in this recordMaterials availability: This study did not generate new unique reagents.Data and code availability: All data and original code supporting the findings in this paper are publicly available on GitHub (https://github.com/InesLange/reef-restoration-carbonate-budgets). Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.The dataset associated with this article is available in ORE at: https://doi.org/10.24378/exe.5065Restoration is increasingly seen as a necessary tool to reverse ecological decline across terrestrial and marine ecosystems.1,2 Considering the unprecedented loss of coral cover and associated reef ecosystem services, active coral restoration is gaining traction in local management strategies and has recently seen major increases in scale. However, the extent to which coral restoration may restore key reef functions is poorly understood.3,4 Carbonate budgets, defined as the balance between calcium carbonate production and erosion, influence a reef’s ability to provide important geo-ecological functions including structural complexity, reef framework production, and vertical accretion.5 Here we present the first assessment of reef carbonate budget trajectories at restoration sites. The study was conducted at one of the world’s largest coral restoration programs, which transplants healthy coral fragments onto hexagonal metal frames to consolidate degraded rubble fields.6 Within 4 years, fast coral growth supports a rapid recovery of coral cover (from 17% ± 2% to 56% ± 4%), substrate rugosity (from 1.3 ± 0.1 to 1.7 ± 0.1) and carbonate production (from 7.2 ± 1.6 to 20.7 ± 2.2 kg m−2 yr−1). Four years after coral transplantation, net carbonate budgets have tripled and are indistinguishable from healthy control sites (19.1 ± 3.1 and 18.7 ± 2.2 kg m−2 yr−1, respectively). However, taxa-level contributions to carbonate production differ between restored and healthy reefs due to the preferential use of branching corals for transplantation. While longer observation times are necessary to observe any self-organization ability of restored reefs (natural recruitment, resilience to thermal stress), we demonstrate the potential of large-scale, well-managed coral restoration projects to recover important ecosystem functions within only 4 years.1851 Royal CommissionFisheries Society of the British IslesBertarelli Program in Marine Scienc

    Outcome of ATP-based tumor chemosensitivity assay directed chemotherapy in heavily pre-treated recurrent ovarian carcinoma

    Get PDF
    BACKGROUND: We wished to evaluate the clinical response following ATP-Tumor Chemosensitivity Assay (ATP-TCA) directed salvage chemotherapy in a series of UK patients with advanced ovarian cancer. The results are compared with that of a similar assay used in a different country in terms of evaluability and clinical endpoints. METHODS: From November 1998 to November 2001, 46 patients with pre-treated, advanced ovarian cancer were given a total of 56 courses of chemotherapy based on in-vitro ATP-TCA responses obtained from fresh tumor samples or ascites. Forty-four patients were evaluable for results. Of these, 18 patients had clinically platinum resistant disease (relapse < 6 months after first course of chemotherapy). There was evidence of cisplatin resistance in 31 patients from their first ATP-TCA. Response to treatment was assessed by radiology, clinical assessment and tumor marker level (CA 125). RESULTS: The overall response rate was 59% (33/56) per course of chemotherapy, including 12 complete responses, 21 partial responses, 6 with stable disease, and 15 with progressive disease. Two patients were not evaluable for response having received just one cycle of chemotherapy: if these were excluded the response rate is 61%. Fifteen patients are still alive. Median progression free survival (PFS) was 6.6 months per course of chemotherapy; median overall survival (OAS) for each patient following the start of TCA-directed therapy was 10.4 months (95% confidence interval 7.9-12.8 months). CONCLUSION: The results show similar response rates to previous studies using ATP-TCA directed therapy in recurrent ovarian cancer. The assay shows high evaluability and this study adds weight to the reproducibility of results from different centre

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses

    Enhancing automated analysis of marine soundscapes using ecoacoustic indices and machine learning

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record. Historically, ecological monitoring of marine habitats has primarily relied on labour-intensive, non-automated survey methods. The field of passive acoustic monitoring (PAM) has demonstrated the potential of this practice to automate surveying in marine habitats. This has primarily been through the use of ‘ecoacoustic indices’ to quantify attributes from natural soundscapes. However, investigations using individual indices have had mixed success. Using PAM recordings collected at one of the world’s largest coral reef restoration programmes, we instead apply a machine-learning approach across a suite of ecoacoustic indices to improve predictive power of ecosystem health. Healthy and degraded reef sites were identified through live coral cover surveys, with 90–95% and 0–20% cover respectively. A library of one-minute recordings were extracted from each. Twelve ecoacoustic indices were calculated for each recording, in up to three different frequency bandwidths (low: 0.05–0.8 kHz, medium: 2–7 kHz and broad: 0.05–20 kHz). Twelve of these 33 index-frequency combinations differed significantly between healthy and degraded habitats. However, the best performing single index could only correctly classify 47% of recordings, requiring extensive sampling from each site to be useful. We therefore trained a regularised discriminant analysis machine-learning algorithm to discriminate between healthy and degraded sites using an optimised combination of ecoacoustic indices. This multi-index approach discriminated between these two habitat classes with improved accuracy compared to any single index in isolation. The pooled classification rate of 1000 cross-validated iterations of the model had a 91.7% 0.8, mean SE) success rate at correctly classifying individual recordings. The model was subsequently used to classify recordings from two actively restored sites, established >24 months prior to recordings, with coral cover values of 79.1% (±3.9) and 66.5% (±3.8). Of these recordings, 37/38 and 33/39 received a classification as healthy respectively. The model was also used to classify recordings from a newly restored site established <12 months prior with a coral cover of 25.6% (±2.6), from which 27/33 recordings were classified as degraded. This investigation highlights the value of combining PAM recordings with machine-learning analysis for ecological monitoring and demonstrates the potential of PAM to monitor reef recovery over time, reducing the reliance on labour-intensive in-water surveys by experts. As access to PAM recorders continues to rapidly advance, effective automated analysis will be needed to keep pace with these expanding acoustic datasets.Natural Environment Research CouncilSwiss National Science FoundationNatural Environment Research Council (NERC)University of ExeterMars Sustainable Solution

    The sound of recovery: coral reef restoration success is detectable in the soundscape (article)

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe dataset associated with this article is available in ORE at https://doi.org/10.24378/exe.37031. Pantropical degradation of coral reefs is prompting considerable investment in their active restoration. However, current measures of restoration success are based largely on coral cover, which does not fully reflect ecosystem function or reef health. 2. Soundscapes are an important aspect of reef health; loud and diverse soundscapes guide the recruitment of reef organisms, but this process is compromised when degradation denudes soundscapes. As such, acoustic recovery is a functionally important component of ecosystem recovery. 3. Here, we use acoustic recordings taken at one of the world’s largest coral reef restoration projects to test whether successful restoration of benthic and fish communities is accompanied by a restored soundscape. We analyse recordings taken simultaneously on healthy, degraded (extensive historic blast fishing) and restored reefs (restoration carried out for 1–3 years on previously-degraded reefs). We compare soundscapes using manual counts of biotic sounds (phonic richness), and two commonly used computational analyses (acoustic complexity index [ACI] and sound-pressure level [SPL]). 4. Healthy and restored reef soundscapes exhibited a similar diversity of biotic sounds (phonic richness), which was significantly higher than degraded reef soundscapes. This pattern was replicated in some automated analyses but not others; the ACI exhibited the same qualitative result as phonic richness in a low-frequency, but not a high-frequency bandwidth, and there was no significant difference between SPL values in either frequency bandwidth. Further, the low-frequency ACI and phonic richness scores were only weakly correlated despite showing a qualitatively equivalent overall result, suggesting that these metrics are likely to be driven by different aspects of the reef soundscape. 5. Synthesis and applications: These data show that coral restoration can lead to soundscape recovery, demonstrating the return of an important ecosystem function. They also suggest that passive acoustic monitoring (PAM) might provide functionally important measures of ecosystemlevel recovery – but only some PAM metrics reflect ecological status, and those that did are likely to be driven by different communities of soniferous animals. Recording soundscapes represents a potentially valuable tool for evaluating restoration success across ecosystems, but caution must be exercised when choosing metrics and interpreting results.Natural Environment Research Council (NERC)Swiss National Science FoundationUniversity of ExeterMARS Sustainable Solution

    Assessing Graphical Robot Aids for Interactive Co-working

    Get PDF
    The shift towards more collaborative working between humans and robots increases the need for improved interfaces. Alongside robust measures to ensure safety and task performance, humans need to gain the confidence in robot co-operators to enable true collaboration. This research investigates how graphical signage can support human–robot co-working, with the intention of increased productivity. Participants are required to co-work with a KUKA iiwa lightweight manipulator on a manufacturing task. The three conditions in the experiment differ in the signage presented to the participants – signage relevant to the task, irrelevant to the task, or no signage. A change between three conditions is expected in anxiety and negative attitudes towards robots; error rate; response time; and participants’ complacency, suggested by facial expressions. In addition to understanding how graphical languages can support human–robot co-working, this study provides a basis for further collaborative research to explore human–robot co-working in more detail
    • …
    corecore