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A B S T R A C T   

Historically, ecological monitoring of marine habitats has primarily relied on labour-intensive, non-automated 
survey methods. The field of passive acoustic monitoring (PAM) has demonstrated the potential of this practice to 
automate surveying in marine habitats. This has primarily been through the use of ‘ecoacoustic indices’ to 
quantify attributes from natural soundscapes. However, investigations using individual indices have had mixed 
success. Using PAM recordings collected at one of the world’s largest coral reef restoration programmes, we 
instead apply a machine-learning approach across a suite of ecoacoustic indices to improve predictive power of 
ecosystem health. Healthy and degraded reef sites were identified through live coral cover surveys, with 90–95% 
and 0–20% cover respectively. A library of one-minute recordings were extracted from each. Twelve ecoacoustic 
indices were calculated for each recording, in up to three different frequency bandwidths (low: 0.05–0.8 kHz, 
medium: 2–7 kHz and broad: 0.05–20 kHz). Twelve of these 33 index-frequency combinations differed signifi-
cantly between healthy and degraded habitats. However, the best performing single index could only correctly 
classify 47% of recordings, requiring extensive sampling from each site to be useful. We therefore trained a 
regularised discriminant analysis machine-learning algorithm to discriminate between healthy and degraded 
sites using an optimised combination of ecoacoustic indices. This multi-index approach discriminated between 
these two habitat classes with improved accuracy compared to any single index in isolation. The pooled clas-
sification rate of 1000 cross-validated iterations of the model had a 91.7% 0.8, mean SE) success rate at correctly 
classifying individual recordings. The model was subsequently used to classify recordings from two actively 
restored sites, established >24 months prior to recordings, with coral cover values of 79.1% (±3.9) and 66.5% 
(±3.8). Of these recordings, 37/38 and 33/39 received a classification as healthy respectively. The model was 
also used to classify recordings from a newly restored site established <12 months prior with a coral cover of 
25.6% (±2.6), from which 27/33 recordings were classified as degraded. This investigation highlights the value 
of combining PAM recordings with machine-learning analysis for ecological monitoring and demonstrates the 
potential of PAM to monitor reef recovery over time, reducing the reliance on labour-intensive in-water surveys 
by experts. As access to PAM recorders continues to rapidly advance, effective automated analysis will be needed 
to keep pace with these expanding acoustic datasets.   
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1. Introduction 

Ecological monitoring of marine habitats is key to understanding 
these ecosystems and successfully measuring the outcomes of conser-
vation and restoration programmes happening in our oceans. This kind 
of ecological monitoring often relies on visual census surveys. However, 
these come with limitations which include the requirement of expert 
data collectors, logistical complexities, are often expensive, are typically 
poor at monitoring cryptic organisms within the ecological community, 
and, only collect a snapshot in time of the target site, rather than con-
tinous long-term data (Mooney et al., 2020; Munger et al., 2022). 
Moreover, conservation and restoration programmes are typically 
limited by time and resources, making it a challenge to sufficiently 
report on their progress using these methods (Boström-Einarsson et al., 
2020; Rilov et al., 2020). 

Automated passive acoustic monitoring (PAM) of whole soundscapes 
has the potential to address many of these limitations (Lindseth and 
Lobel, 2018; Mooney et al., 2020, Lamont et al., 2021). Low-cost 
acoustic recording technology capable of recording continuously for 
several days, or longer with duty cycling, is becoming available (Chapuis 
et al., 2021; Lamont et al., 2022). These devices can be deployed rapidly 
by non-expert data collectors and left to record autonomously. These can 
collect data on cryptic organisms that disproportionately rely on 
acoustic communication compared to non-cryptic species (Lamont et al., 
2022). A growing number of studies have found relationships between 
the soundscapes of marine habitats and traditional ecological metrics 
such as benthic cover, fish communities and overall habitat quality using 
automated approaches (Nedelec et al., 2015; Butler et al., 2016; 
Freeman and Freeman, 2016; Harris et al., 2016; Gordon et al., 2018; 
Elise et al., 2019). As well as being useful for the tracking of habitat 
characteristics, soundscapes also constitute important components of 
ecosystem functioning, especially for orientation and recruitment of a 
variety of organisms (Simpson et al., 2005; Lecchini et al., 2018; Gordon 
et al., 2019). Surveying reefs using acoustics can therefore provide new 
understandings that may explain both ecological and behavioural 
processes. 

Given recent innovations in autonomous hydrophone technology, 
our ability to capture large databases of long-term soundscape re-
cordings is expanding (Sousa-Lima et al., 2013; Lamont et al., 2022). 
However, analytical approaches must keep pace with this if the potential 
of these data is to be maximised. Early analysis was based on aural as-
sessments or visual inspection of spectrograms to score characteristics 
such as the frequency of occurrence and diversity of acoustic events like 
fish vocalisations (Putland et al., 2017; Archer et al., 2018; McWilliam 
et al., 2017, 2018; Bertucci et al., 2020; Lamont et al., 2021). However, 
these approaches can be slow and labour intensive, introducing a severe 
limit on the speed at which PAM data can be analysed. 

Computationally generated ecoacoustic indices are becoming a 
popular approach to overcome this limitation (Gibb et al., 2019). 
Ecoacoustic indices have primarily been developed for terrestrial habi-
tats (Sueur et al., 2014) where they are used to quantify soundscape 
attributes including variability across time and/or frequency bands 
(Stowell and Sueur, 2020). These indices can be automatically derived 
from long-term acoustic recordings, enabling extended recordings to be 
analysed. Several indices have been tested recently in the marine envi-
ronment, revealing relationships between these and attributes of the 
ecological community, habitat quality and ecological functioning of 
marine habitats (Harris et al., 2016; Lindseth and Lobel, 2018; Gordon 
et al., 2018; Elise et al., 2019b; Mooney et al., 2020). 

These studies have primarily used individual ecoacoustic indices to 
test for differences between sites (e.g., low- and high-quality habitats, 
reefs pre- and post-bleaching on reefs), or relationships with other 
ecological metrics (e.g., biodiversity, abundance etc) so far. However, 
these indices do not perform consistently across all marine in-
vestigations (Kaplan et al., 2015; Bertucci et al., 2016; Dimoff et al., 
2021). Results from any individual index can also be biased by 

individual components of the soundscape, such as a high density of 
snapping shrimps or repetitive fish chorusing, limiting their utility to 
characterise the wider community (Staaterman et al., 2013; Bolgan 
et al., 2018; Dimoff et al., 2021). 

Some terrestrial soundscape ecology investigations have attempted 
to overcome similar performance issues through combining several 
ecoacoustic indices to generate multivariate representations of acoustic 
recordings known as ‘compound indices’ to generate a more holistic 
representation of the soundscape (Eldridge et al., 2018). These com-
pound indices can then be input into machine learning algorithms which 
are able to identify relationships between this ‘feature set’ of indices and 
the task asked of the algorithm through finding patterns and interactions 
between the indices. (Eldridge et al., 2018; Bradfer-Lawrence et al., 
2019; Gibb et al., 2019; Sethi et al., 2020). 

Such tasks include supervised approaches such as classification 
problems which group soundscape recordings into categories specified 
by the researchers (e.g logged or unlogged forest) or regression tasks 
which can place recordings along a gradient (e.g avian diversity) (Sethi 
et al,. 2020, 2021). Alternatively, unsupervised approaches can be used 
such as clustering which can be used to identify key groups from re-
cordings, or, anomaly detection can be used to identify recordings which 
significantly deviate from the majority (e.g containing noise pollution or 
a rare animal chorus) (Sethi et al., 2020). 

In this study, we use whole soundscape recordings to test whether a 
machine learning algorithm could be trained using a compound index to 
accurately classify recordings from two different ecostates of a marine 
habitat. We used coral reef soundscapes due to the diversity of sounds 
present on these ecosystems and known relationships between their 
soundscape and ecological attributes (Kaplan et al., 2015; McWilliam 
et al., 2017; Nedelec et al., 2015). We then trialled this model in a real 
world application using recordings from neighbouring reefs which had 
been actively restored by one of the world’s largest reef restoration 
programmes, located in Sulawesi, Indonesia. Coral restoration pro-
grammes typically fail to collect adequate monitoring data (Bayraktarov 
et al., 2019; Boström-Einarsson et al., 2020). Through demonstrating the 
utility of this approach, we intend to highlight a more efficient and cost- 
effective means of field data collection for the monitoring of restoration 
and other marine conservation projects alike. 

2. Methods 

2.1. Study sites 

Recordings were made at sites in the Spermonde Archipelago (South 
Sulawesi, Central Indonesia; 4◦56.9′S, 119◦18.1′E; Fig. 1C) around 
Pulau Badi (Fig. 1A) and Pulau Bontosua (Fig. 1B). In 2006, the Mars 
assisted reef restoration system (MARRS) (buildingcoral.com) was 
developed to provide a novel methodology to re-establish coral cover at 
sites that have been degraded to rubble fields by historical coral mining 
and dynamite fishing (Williams et al., 2019). Coral fragments are 
attached to ‘reef stars’, interlinked metal frames, which provide a stable 
substrate. This prevents the smothering of new coral recruits through the 
turn over of rubble by waves and tides which typically slows the re-
covery process to a decadal timescale or longer (Fox et al., 2003). Be-
tween 2013 and 2017 this practice increased coral cover from 
approximately 10% to 60% across 7,000 m2 of reef (Williams et al., 
2019). Recordings were made at seven sites which encompassed four 
distinct types of reef habitat: healthy (Badi & Bontosua), degraded 
(Bontosua & Salisi), mature restored (Badi & Bontosua) and newly 
restored (Salisi). Coral cover was assessed to provide a measure of reef 
health (methodology in Supp. 1). The two healthy sites exhibited 
naturally high coral cover (Badi: 91.2% ± 2.0; Bontosua: 93.1% ± 2.6; 
mean ± SE) whereas the degraded sites exhibited low coral cover (Salisi: 
2.1% ± 0.9; Bontosua: 17.6% ± 4.6) (Fig. 2). The two mature restored 
sites were established >24 months previously and exhibited increased 
coral cover (Badi: 79.1% ± 3.9; Bontosua: 66.5% ± 3.8) compared to 
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the newly restored site (25.6% ± 2.6), which was established <12 
months previously. 

2.2. Acoustic recordings 

The recordings were made across the seven sites during 
August–September 2018 as part of the MARRS monitoring programme. 
We used a regime which sampled one hour blocks from sites five days 
either side of the full moon (26th August 2018) and three days either 
side of the following new moon (10th September 2018) during daylight 
(09:00–15:00), twilight (half an hour either side of sunrise and sunset) 
and night time (half an hour either side of midnight) periods. Three 
SoundTraps (SoundTrap 300STD, 48 kHz sampling rate, Ocean 

Instruments, Auckland, NZ) were used, with one suspended 0.5 m above 
the seabed for each deployment at a site. In each new round of de-
ployments, SoundTraps were assigned randomly to recording sites 
within a counterbalanced blocking design, in order to control for po-
tential instrument error. 

We sub-sampled five non-overlapping one-minute segments from 
each of the hour-long periods at random. Only samples recorded during 
calm conditions (wind speed < 20 km h− 1) were used. These samples 
were also screened for motorboat noise and any recordings with this 
disturbance were removed, resulting in 262 recordings in the final 
sample set. This sample set was previously used in Lamont et al. (2021) 
to compare fish sound diversity between sites. 

Fig. 1. Location and habitat class of the seven reef sites, present within the broader Spermonde Archipelago, Indonesia (A) where soundscape recordings were 
collected. Fringing reefs from two nearby islands: Bontosua (B) and Badi (C) were used. Modified from Lamont et al. (2021). 

Fig. 2. Representative habitat and coral cover images from the four habitat classes at which soundscape recordings were made. (A) Degraded, (B) healthy, (C) newly 
restored and (D) mature restored. 
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2.3. Processing recordings 

Each recording was filtered using a short-term Fourier transform 
band-pass filter into three frequency bands: low-frequency (0.05–0.8 
kHz), medium-frequency (2–7 kHz) and a broadband (0.05–20 kHz). 
The low-frequency band covered all the known fish vocalisations within 
the dataset (Lamont et al., 2021), while the medium-frequency band 
comprised invertebrate (primarily snapping shrimp) sound (Elise et al., 
2019a). The broad-frequency band was used to encompass the full 
spectrum of potentially relevant frequencies, as previously used in coral 
reef soundscape investigations (Kaplan et al., 2015; Lyon, 2018). Fre-
quencies below 0.05 kHz were excluded from the low- and broad- 
frequency band recordings to remove geophonic noise and self-noise 
from the recording system (Curtis et al., 1999). All processing was 
performed in R (v3.4.2. R Development Core Team, 2020): audio files 
were read and written using tuneR (v.1.3.3) (Ligges et al., 2018) and the 
filters were implemented using Seewave (v2.1.6) (Sueur et al., 2008). 

2.4. Ecoacoustic indices 

Twelve ecoacoustic indices were chosen from a range of previous 
soundscape studies (Table 1). Each index was calculated for all three 
frequency bands, with two exceptions: Snap rate was only calculated for 
the middle- and broad-frequency bands, because snapping shrimp 
cavitation bubbles are not audible at lower frequencies (Bohnenstiehl 
et al., 2016), and the normalised difference soundscape index (NDSI) 
was only calculated for the broad-band recordings. NDSI is typically 
used to quantify discrepancies in amplitude between an anthropogenic 
noise band up to 1 kHz and a biophonic noise band at selected higher 
frequencies (Kasten et al., 2012). We instead used this index to quantify 
differences in the 1 kHz band where fish noise dominates, and, a higher 
2–7 kHz frequency band where snapping shrimp sound dominates (Au 
and Banks, 1998). Thus, we established a feature set of 33 index values 
across 12 indices and three frequency bands for each of the 262 one- 
minute recordings. All indices were calculated using the R package 
Seewave (Sueur et al., 2008) where possible, all remaining indices were 
calculated in Soundecology R package (v.1.3.3) (Villanueva-Rivera et al., 
2018) other than SPL which was calculated in paPAM (Nedelec et al., 
2016) and snap rate which calculated using a custom MATLAB script 
(Gordon et al., 2018). 

2.5. Selection of indices to differentiate healthy and degraded habitats 

All 33 indices were examined for separation between recordings 

from healthy (n = 81) and degraded (n = 71) habitats using Mann- 
Whitney U tests. Since the purpose was to explore the potential of 
each candidate index for model development, we did not control for 
spatial and temporal pseudoreplication within the library of recordings, 
nor control for cross-correlation between indices with similar trends. 
Violin plots were used to visualise the degree of overlap between the 
distributions for indices with indicative differences. Where minimal 
overlap was observed between the two habitats, the index could be 
considered likely to provide a promising measure with which to differ-
entiate between healthy and degraded habitats. 

2.6. Machine-learning approaches to develop a compound index 

Following analysis of individual indices, we developed a supervised 
machine-learning model to assign recordings to either healthy or 
degraded habitat classes. A regularised discriminant analysis (RDA) al-
gorithm was selected to account for the high level of collinearity re-
ported between indices (Supp. 1). An optimised set of indices was 
selected in a ‘feature selection’ stage, using recursive feature elimination 
(RFE) and a multivariate adaptive regression spline (MAR) (Kuhn and 
Johnson, 2019) (Supp. 1). The RFE highlighted increases in model ac-
curacy with the multi-index approach as additional indices were added 
sequentially (Supp. 1, Fig. S1). Predictive accuracy was greatest with 
eight indices, followed by a gradual decline as the addition of further 
indices introduced noise and/or caused model overtraining. The list of 
suggested features from RFE included the following index/frequency 
band combinations: broadband ACI, H, NDSI and Ht; and medium- 
frequency band ACI, BI, H and Ht. This was highly congruent with 
rankings obtained from the relative importance scores using the MAR 
(Fig. 3). 

Following RFE, further manual feature selection was conducted by 
systematic removal and addition of indices whilst executing the full 
model, to select a final feature set with the lowest misclassification rate. 
This led to discarding Ht in both the broad-range and middle-frequency 
bands, and the introduction of low-frequency band ACI and middle- 
frequency band AR. Thus, the final set was: low-frequency band ACI, 
medium-frequency band ACI, AR and BI, broadband ACI, H and NDSI. 
Feature selection was performed using the R packages mlbench (v2.1.1) 
(Leisch and Dimitriadou, 2010) and Caret (v.6.0–86) (Kuhn, 2020). 

2.7. Constructing the final model 

An RDA model was constructed using the healthy and degraded 
datasets, using the R packages MASS (v.7.3-53) (Venables and Ripley, 

Table 1 
Twelve ecoacoustic indices calculated from recordings with summary description of the mechanistic principle, software used and respective settings employed.  

Index Mechanism Software Settings Origin 

Acoustic complexity index 
(ACI) 

Measures variability in intensity of frequencies across 
time 

Seewave in R Window size = 512; type = Hamming; overlap =
0 

(Pieretti, 2011) 

Acoustic entropy (H) Measures randomness across temporal and spectral 
domains 

Seewave in R Window size = 512; envelope = Hilbert (Sueur, 2008) 

Acoustic eveness index 
(AEI) 

Measures diversity across frequency bands Soundecology in 
R 

Max freq = upper bound of band in use; freq step 
= max freq/10; threshold = -50 dB 

(Villanueva-Rivera, 
2011) 

Amplitude index (M) Measures median of amplitude envelope Seewave in R Envelope = Hilbert (Sueur, 2008) 
Acoustic richness (AR) Ranks recordings based on amplitude multiplied by 

randomness across the temporal domain 
Seewave in R Envelope = Hilbert (Depraetere, 2012) 

Bioacoustic index (BI) Measures cumulative intensity across frequency 
bands 

Soundecology in 
R 

Min and max frequency matched to band in use; 
window size = 512 

(Boelman, 2007) 

Normalised mean 
difference index (NDSI) 

Measures amplitude difference between two selected 
frequency bands 

Seewave in R Min and max frequency matched to band in use; 
window size = 512 

(Kasten, 2012) 

Number of peaks Number of major frequency peaks obtained from a 
mean spectrum 

Seewave in R Window size = 512; type = Hanning; overlap = 0 (Sueur, 2008) 

Spectral entropy (Ht) Measures randomness across the frequency domain Seewave in R No settings required (Sueur, 2008) 
Temporal entropy (Hf) Measures randomness across the temporal domain Seewave in R No settings required (Sueur, 2008) 
Snap rate Measures rate of snapping shrimp snaps MATLAB Custom script from Gordon et al., (2018) Widely used 
Sound pressure level (SPL) Calibrated measure of root mean squared sound 

pressure level 
paPAM in 
MATLAB 

Window length = 1024; type = Hamming; 
Overlap = 50% 

Widely used  

B. Williams et al.                                                                                                                                                                                                                               
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200) and KlaR (v.0.6-15) (Weihs et al., 2005). Model accuracy was 
assessed using k-fold cross validation (10 folds), whereby the dataset 
was partitioned into ‘training’ and ‘test’ sets to prevent overestimation 
of model accuracy when presented with new data (Supp. 1). To account 
for variation in the RDA, 1000 repeats of the cross-validated model 
construction were performed to assess accuracy (Rao et al. 2008). 

A principal component analysis (PCA) and a pairs plot comparing 
each combination of the eight selected indices were generated for all 
recordings. These were used to test whether soundscape properties from 
restored reefs diverged from the healthy and degraded classes, which 
would lead to potentially inappropriate classifications using the RDA 
trained on the healthy and degraded recordings. Both tests were con-
ducted in R using inbuilt functions (Supp. 1, Fig. S4). 

3. Results 

3.1. Comparing indices between healthy and degraded sites 

Exploratory Mann-Whitney U tests revealed significant differences 
between healthy and degraded habitat index scores for 12 of the 33 
indices (Fig. 4). Bonferroni corrections were also used to reduce the 
likelihood of false positives in the search for a significant difference; the 
original alpha value of 0.05 was therefore divided by 33 to provide a 
new value of 0.00152. Using this more conservative approach no longer 
reveals AI in the broad and medium-frequency bands, as well as AEI in 
the medium-frequency band, to be significantly different. 

Violin plots of the three most significantly different index results 

Fig. 3. Relative importance rankings of indices obtained from the multivariate adaptive regression (MAR) analysis used for feature selection. The eight recom-
mendations obtained from the recursive feature elimination (RFE) analysis are indicated by the black lines. The top eight indices of the MAR analysis were congruent 
with the eight recommendations from RFE, though the order was not conserved. Black dots to the right of bars indicate features which were selected for the final 
model after further manual feature selection. 

B. Williams et al.                                                                                                                                                                                                                               
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between the healthy and degraded sites revealed large zones of overlap 
between values for these indices between habitat classes (Fig. 5). The 
strongest significant difference was reported for H in the 2–7 kHz band, 
here 71 of the 152 (47 %) of recordings reported results that did fall in 
range of both habitat types. 

3.2. Comparing indices to phonic richness 

We searched for a correlation between each ecoacoustic index and 
the diversity of fish sounds present in each recording using the ‘phonic 
richness’ method which counts the number of unique sound types 
audible in each recording (Lamont et al., 2021) (Supp. 1). This revealed 
no strong relationships (Pearson correlations) between phonic richness 
and any of the 33 indices trialled (Supp. 1, Fig. S3). The strongest 
relationship was a weak negative correlation with the acoustic entropy 
index (H) for the broad-frequency band (Pearson correlation; rho =
-0.43; p < 0.001), with all other indices reporting weaker correlations 
than this. 

3.3. Regularised discriminant analysis 

From the 1000 repeated constructions of the cross-validated model 
using the 152 recordings taken across healthy and degraded sites, the 
pooled mean misclassification rate was 8.27% (0.84, mean SE). Across 
these model constructions, of the 81 recording samples taken from the 
two healthy sites, 73.0 (0.1) of these were correctly classified as healthy, 

with 8.0 (0.1) misclassified as degraded. Of the 71 recordings taken from 
the two degraded sites, 67.2 (0.1) of these were classified as degraded, 
with 3.7 (0.1) misclassified as healthy (see Fig. 6 for individual results 
for each recording sample). 

Cluster analysis using the principal component analysis (PCA; Fig. 7) 
and a pairs plot (Supp. 1, Fig. S4) were used to examine whether the 110 
samples taken from recordings of the three restored sites overlapped 
with recordings from the control sites. If they deviated then it would be 
likely that the model would provide inappropriate classifications to 
these sites. For the mature restored and newly restored sites, 70/81 and 
70/71 samples respectively fell within one or both of the predictive el-
lipses for the two existing classes. This indicates that the soundscapes of 
the restored sites did not diverge from the soundscape present at the 
other two habitat types when using the properties investigated here. 
This supports the inputting of restored samples into the model as the 
data were not divergent from the original training data. Additionally, 
the PCA showed that 61/81 samples from the mature restored sites fell 
within the ellipse that could be used to predict healthy sites, whereas 
24/27 samples of recordings from the newly restored site fell within the 
ellipse that could be used to predict degraded sites. However, it is 
important to note that there was a large region of overlap between the 
healthy and degraded class when using only the two dimensions shown 
by the PCA, with most of the ellipse of the degraded classes encompassed 
by that of the healthy class. 

Analysis of the restored site samples revealed that the majority of 
samples from mature restored sites were classified as healthy, but 

Fig. 4. Heat map displaying results from Mann-Whitney U tests between the ecoacoustic index scores calculated from recordings of healthy (n = 81) and degraded (n 
= 71) sites in low-, medium- and broad-frequency bands. The habitat class with the higher mean is indicated by the letter in the bottom right corner of each cell (H =
Healthy; D = Degraded). Blank cells indicate indices for which values from the corresponding frequency band were not calculated (see Methods). 

Fig. 5. Violin plots of the three indices with the most significant differences between healthy (n = 81) and degraded (n = 71) habitat. (A) Medium-frequency band 
Entropy Index (H) (Mann-Whitney U; U = 1.98, p < 0.001), (B) Broad-frequency band Acoustic Complexity index (ACI) (U = 1.78, p < 0.001), (C) Medium-frequency 
band Temporal Entropy (Ht) (U = 1.63, p < 0.001). 
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samples from the newly restored site were mainly classified as degraded 
(Fig. 8). The Bontosua mature restored site was classified more clearly 
than the Badi mature restored site, with 37/38 and 33/39 samples 
classified as healthy respectively. The six samples classified as degraded 
from the Badi mature restored site occurred consecutively on the new 
moon at night. At the newly restored site, 27/33 samples were classified 
as degraded, and all of these were during the full moon (though only 
four new moon samples were available) and five of these were at night. 

The model trained on the 2018 recordings was also tested on a 
smaller number of recordings taken at the same sites 10 months later 
(June/July 2019). Here, the model provided similar predictions for six 
of the seven sites; while one site (Healthy Bontosua) exhibited a change 
in prediction between 2018 and 2019, changing from primarily being 
classified as healthy to degraded (Table 2, full results in Fig. S5). 

4. Discussion 

This study compared the value of individual ecoacoustic indices and 
a machine-learning model trained on a compound index to discriminate 
between coral reef ecostates. While no single ecoacoustic index could 
reliably discriminate between healthy and degraded reefs, a supervised 
machine-learning approach more accurately predicted habitat class 
from randomly drawn acoustic samples. This highlights the potential of 
combining PAM with machine learning for monitoring the health of 
marine ecosystems. 

Twelve individual ecoacoustic indices were calculated in up to three 
frequency bandwidths, totalling 33 values, of which 12 indices were 
significantly different between healthy and degraded reefs (Fig. 4). 
There were no strong correlations between any of these indices and 

Fig. 6. Machine learning classification of 
acoustic samples from the healthy and 
degraded sites. Each cell indicates a single 
one-minute recording from the 152 taken in 
healthy and degraded habitats. The model 
was executed 1000 times on the dataset, 
generating a new habitat class prediction 
each time for every recording. Values within 
cells represent the proportion of these 1000 
iterations in which the recording was pre-
dicted as originating from a healthy site, 
with the remaining being predicted as 
degraded (green shading: >0.5; pink 
shading: < 0.5). Recordings on the left of the 
partition were made during the day and re-
cordings to the right were made during 

crepuscular or nighttime periods. Although frequent gaps were present in the sampling regime, the order with which cells are presented within their respective blocks 
conserves the overall order with which they were sampled across time. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)   

Fig. 7. Plot from the principal component analysis of PC1 and PC2 scores for the Healthy and Degraded site recording samples. Samples from recordings of Restored 
sites are overlaid on this to help determine whether these conform with either of the two existing classes or whether the properties of their soundscape are distinct. 
Ellipses indicate the zone within which a new sample can be assigned to a class using the two principal components presented in this figure. Overlapping areas 
indicate ambiguous recordings which cannot be differentiated by PCA. 
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phonic richness (Supp. 1), indicating that fish sound diversity alone is 
not the dominant driver of these results; rather alternative aspects of the 
soundscape are responsible. A metric that combines abundance along-
side diversity of fish vocalisations may reveal more about the role these 
play in driving index values. Other contributors may originate from 
alternative biotic or abiotic sources. Invertebrates are well documented 
contributors to reef soundscapes including snapping shrimp (Bohnen-
stiehl et al., 2016), urchin feeding activities (Radford et al., 2008) and 
the movement of hard shelled organisms (Freeman et al., 2014). The 
photosynthetic process of macro algae has also been reported as a sound 
producer (Freeman et al., 2018). Though understudied, abiotic attri-
butes may also influence the soundscape as ecostates change (Duarte 
et al. 2021). Though recordings were taken in calm conditions, low level 
geophonic noise produced by waves and wind may propagate differently 
through a rubble field compared to a more structurally complex reef, or 
the regular movements of unconsolidated coral rubble due to hydro-
dynamic forcing might also contribute to the soundscape (Kenyon et al. 
2020). 

The distribution of values within indices showing significant differ-
ences between healthy and degraded reefs exhibited substantial overlap 
between the two habitat classes. The best performing individual index 
was H in the 2–7 kHz band. For this index, 71 of the 152 (47 %) of re-
cordings had non-overlapping values, meaning they could not be 
correctly classified as healthy or degraded, all other recordings were 
ambiguous as the values fell within the range reported for both habitat 
types. This means that the ability to distinguish between habitat classes 
from a single recording using an individual index is low, as any given 
value from one class has a high chance of being reported from a 
recording in the other class. Violin plots of the three most significant 
results demonstrate this large overlap between the values of each class 
(Fig. 5). In isolation, these indices could discriminate between habitats if 
extensive sampling is achievable for all sites of interest to build up a 
dataset that can be tested for statistical significance, as demonstrated 
here. However, their potential to deliver reliable results from short 
‘snapshot’ recordings is lower and their ability to deliver insights into 

more complex tasks, beyond a coarse healthy-degraded comparison, 
may be limited. 

In contrast to bivariate analyses, combining multiple indices with 
regularised discriminant analysis (RDA) gave a strong predictive ability 
to classify habitats based on single recordings. Recursive feature elimi-
nation (RFE) highlights the increase in accuracy attainable through 
constructing an optimised set of multiple indices (Supp. 1, Fig. S1) 
compared to using individual indices (Fig. 5). The misclassification rate 
of the final RDA model was 8.27% (0.84, mean SE) when applied to 
recordings from the same season. The model made accurate predictions 
despite being kept blind to diel and lunar period, which are both known 
to influence marine soundscapes (Staaterman et al., 2014); this high-
lights its robustness to temporal changes in soundscapes. The model also 
reliably delivered the same classification for recordings from six of the 
seven sites taken ten months later. The feature-selection stage of this 
approach is specific to the data and questions considered in this study. 
However, indices within the final feature set may offer a useful starting 
place for similar investigations elsewhere. To produce optimised 
models, investigations at new locations addressing new questions should 
carry out an independent feature selection process on their own data. 

Following the successful classification of healthy and degraded 
habitats, our compound index based model was used to examine 
soundscape recordings taken from nearby coral reef habitats that had 
been restored (Williams et al., 2019). This tested the ability of this 
approach to perform a rapid assessment of these restored sites using one- 
minute soundscape recordings. The model was able to detect differences 
between the two mature restored sites and the newly restored site. Of the 
recording samples from the two mature restored sites, 33/39 and 37/38 
were primarily classified as healthy, whereas 27/33 samples from the 
newly restored sites were classified as degraded (Fig. 8). The mature 
restored sites were more than twice as old as the newly restored site 
(restoration started >24 months prior to recordings on mature restored 
sites, compared to <12 months for the newly restored site), and had 
approximately three times more live coral cover (79.1% ± 3.9 and 
66.5% ± 3.8 for the mature restored sites, 25.6% ± 2.6 for the newly 

Fig. 8. Machine-learning classification of acoustic samples from the restored sites. Each cell indicates a single one-minute recording from the 110 taken from restored 
sites. The model was executed 1000 times on the dataset, generating a new habitat class prediction each time for every recording. Values within cells represent the 
proportion of these 1000 iterations in which the recording was predicted as originating from a healthy site, with the remaining being predicated as degraded (green 
shading: >0.5; pink shading: <0.5). Recordings on the left of the partition were made during the day and recordings to the right were made during crepuscular or 
nighttime periods. Despite gaps in the sampling regime, the order within blocks conserves the overall order with which they were sampled across time. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Results from the application of the 2018 model when tested on recordings taken at the same sites in 2019.   

Badi 
Healthy 

Bontosua 
Healthy 

Salisi 
Degraded 

Bontosua 
Degraded 

Badi Mature 
Restored 

Bontosua Mature 
Restored 

Salisi Newly 
Restored 

Recordings classified as 
Healthy 

9/9 2/12 0/5 5/12 9/9 12/12 8/9 

Proportion classified as 
Healthy 

1.0 0.17 0 0.42 1.0 1.0 0.89  
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restored site; values all % live coral cover mean ± SE; full data in Supp. 
1). Restoration progress was clearly detected in the soundscape, with 
better classification made possible by using a machine-learning-driven 
approach, suggesting PAM can be a useful tool for monitoring restora-
tion against reference sites. More generally, this study highlights the 
potential for using machine-learning approaches to explore PAM data to 
provide greater analytical power in coral reef monitoring programmes. 

Further improvements include considering sources of observed error 
in the model, which could be due to several factors working in isolation 
or in combination. The RDA approach operates best when input features 
have Gaussian distributions (Wu et al., 1996), but some features used in 
this study exhibited sub-Gaussian distributions. This is likely due to 
inclusion of samples from various times of day and from multiple sites. 
Diel trends are frequently detected in reef soundscapes across a range of 
ecoacoustic indices (Kaplan et al., 2015; Bertucci et al., 2020b; Carriço 
et al., 2020). Additionally, reef soundscapes can differ over small spatial 
scales (Putland et al., 2017). In this study, samples were taken from 
spatially separated sites to reduce pseudoreplication, thus differences 
within habitat classes are likely. Both these factors may have skewed the 
distributions of the feature sets. Furthermore, the dataset used to train 
the model will also contain natural outliers through ecological 
randomness that cannot be resolved at the sampling resolution 
employed. Longer periods of recording can be used to minimise impacts 
of this natural variation (Bradfer-Lawrence et al., 2019), though we 
show here that short periods of recording can still be used to identify 
accurate classifications between significantly different habitat states. 

Six of the seven sites studied in 2018 retained similar classifications 
when resampled 10 months later in 2019. The outlier was Bontosua 
Healthy, for which 10/12 recordings were incorrectly classified as 
degraded. Recordings at this site were only collected during the day in 
2019, and 9/12 of these were taken during the new moon period. The 
soundscape may therefore have been inadequately sampled. Alterna-
tively, this could be an early indicator of a changing state of reef health 
at this site, not yet seen in the coral cover data, which was similar in both 
years (Supp. 1), or, this could demonstrate the specificity of this model 
to the time it was taken. 

Future investigations could build on the present study by considering 
a more nuanced approach to classifying ecostate. For example, this study 
employed a binary classification of reef health but, in reality, marine 
habitats occur across gradients of ecostates (Downs et al., 2005; Smith 
et al., 2008). Sampling across these gradients, and using regression- 
based algorithms such as logistic regression, random forests or neural 
networks could support models that can predict on a continuous scale. 
Additionally, within the context of coral reefs, although live coral cover 
may be a strong indicator of overall reef health (Smith et al., 2016; 
Dietzel et al., 2020), other attributes of interest could be incorporated to 
better determine the ecostate of a site. For example, soundscape-based 
machine-learning models could be trained to predict metrics which 
are effort and training-intensive, such as fish or invertebrate abundance 
or diversity, and other habitat attributes could be explored such as 
structural complexity or ecosystem stability. Similar approaches could 
also be applied to other kinds of marine habitats where soundscape 
research has so far been limited (Pieretti and Danovaro, 2020). By 
drawing comparisons with a wider range of traditional metrics used in 
marine monitoring, the potential for machine-learning-based analyses of 
ecoacoustic recordings can be further developed. 

5. Conclusion 

Given the increasing availability of hydrophone technology (Chapuis 
et al., 2021; Lamont et al., 2022), acoustic datasets from the marine 
environment are set to rise. 

Automated analyse is needed to efficiently process and analyse large 
acoustic datasets so that insights from the information held within can 
be maximised. However, this is so far underdeveloped. Our investigation 
presents an automated approach, through the use of a compound index 

and machine-learning, that improves upon existing approaches used in 
the marine environment. We first demonstrate the use of this to classify 
coral reef habitats into healthy or degraded ecostates based on short- 
term recordings. We then demonstrate this in an applied setting, high-
lighting the utility of this approach when assessing areas of restored reef, 
revealing that restoration progress is detectable in the soundscape. This 
investigation provides the first evidence that compound indices and 
machine learning are able to outperform the use of single ecoacoustic 
indices on a tropical reef and that this approach should be considered for 
use in other marine and terrestrial habitats applications. 
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