30 research outputs found

    An evaluation of the heat test for the ice-nucleating ability of minerals and biological material

    Get PDF
    Ice-nucleating particles (INPs) are atmospheric aerosol particles that can strongly influence the radiative properties and precipitation onset in mixed-phase clouds by triggering ice formation in supercooled cloud water droplets. The ability to distinguish between INPs of mineral and biological origin in samples collected from the environment is needed to better understand their distribution and sources. A common method for assessing the relative contributions of mineral and biogenic INPs in samples collected from the environment (e.g. aerosol, rainwater, soil) is to determine the ice-nucleating ability (INA) before and after heating, where heat is expected to denature proteins associated with some biological ice nucleants. The key assumption is that the ice nucleation sites of biological origin are denatured by heat, while those associated with mineral surfaces remain unaffected; we test this assumption here. We exposed atmospherically relevant mineral samples to wet heat (INP suspensions warmed to above 90 ∘C) or dry heat (dry samples heated up to 250 ∘C) and assessed the effects on their immersion mode INA using a droplet freezing assay. K-feldspar, thought to be the dominant mineral-based atmospheric INP type where present, was not significantly affected by wet heating, while quartz, plagioclase feldspars and Arizona Test Dust (ATD) lost INA when heated in this mode. We argue that these reductions in INA in the aqueous phase result from direct alteration of the mineral particle surfaces by heat treatment rather than from biological or organic contamination. We hypothesise that degradation of active sites by dissolution of mineral surfaces is the mechanism in all cases due to the correlation between mineral INA deactivation magnitudes and their dissolution rates. Dry heating produced minor but repeatable deactivations in K-feldspar particles but was generally less likely to deactivate minerals compared to wet heating. We also heat-tested biogenic INP proxy materials and found that cellulose and pollen washings were relatively resistant to wet heat. In contrast, bacterially and fungally derived ice-nucleating samples were highly sensitive to wet heat as expected, although their activity remained non-negligible after wet heating. Dry heating at 250 ∘C leads to deactivation of all biogenic INPs. However, the use of dry heat at 250 ∘C for the detection of biological INPs is limited since K-feldspar's activity is also reduced under these conditions. Future work should focus on finding a set of dry heat conditions where all biological material is deactivated, but key mineral types are not. We conclude that, while wet INP heat tests at (>90 ∘C) have the potential to produce false positives, i.e. deactivation of a mineral INA that could be misconstrued as the presence of biogenic INPs, they are still a valid method for qualitatively detecting very heat-sensitive biogenic INPs in ambient samples if the mineral-based INA is controlled by K-feldspar

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    Contributions of biogenic material to the atmospheric ice-nucleating particle population in North Western Europe

    Get PDF
    A minute fraction of atmospheric particles exert a disproportionate effect on the phase of mixed-phase clouds by acting as ice-nucleating particles (INPs). To understand the effects of these particles on weather and climate, both now and into the future, we must first develop a quantitative understanding of the major INP sources worldwide. Previous work has demonstrated that aerosols such as desert dusts are globally important INPs, but the role of biogenic INPs is unclear, with conflicting evidence for their importance. Here, we show that at a temperate site all INPs active above −18 °C at concentrations >0.1 L−1 are destroyed on heating, consistent with these INPs being of biological origin. Furthermore, we show that a global model of desert dust INPs dramatically underestimates the measured INP concentrations, but is consistent with the thermally-stable component. Notably, the heat sensitive INPs are active at temperatures where shallow cloud layers in Northern Europe are frequently observed to glaciate. Hence, we suggest that biogenic material is important for primary ice production in this region. The prevalence of heat sensitive, most likely biogenic, INPs in this region highlights that, as a community, we need to quantify the sources and transport of these particles as well as determine their atmospheric abundance across the globe and at cloud altitudes

    The study of atmospheric ice-nucleating particles using microfluidically generated droplets

    No full text
    We present the study of atmospherically relevant ice-nucleating particles (INP) via on-chip droplet generation with downstream cooling. The apparatus was applied to the measurement of a range of INP samples and to the analysis of collected atmospheric aerosol samples, with a view to deployment in future global field campaigns

    Cloning, expression and molecular modeling of the anthocyanidin reductase (FaANR) gene during strawberry fruit development

    No full text
    Introduction - Proanthocyanidins (PAs) are a group of polyphenolic secondary metabolites synthesized in plants via flavonoid pathway. Strawberry (Fragaria x ananassa Duch.) is a rich source of flavonoids and proanthocyanins, which are known to have multiple health benefits. The anthocyanidin reductase (ANR) is an interesting gene to study within the flavonoid biosynthesis pathway, since it diverts the anthocyanin pathway to flavonol synthesis. Materials and methods - The present study describes cloning, semi-quantitative expression analysis and molecular modeling of the strawberry (cv. Sweet Charlie) anthocyanidin reductase (FaANR) gene during the progressive stages of fruit development. Results and discussion - The FaANR gene was 1,020 bp long with an open reading frame encoding a protein of 308 amino acid residues. The estimated molecular mass and isoelectric point of the protein were 32.89 kD and 5.54, respectively. The expression of FaANR was only seen during early stages of fruit development indicating its early involvement in PA accumulation, well before ripening onset. Analysis of the FaANR sequence showed 98% similarity to ANR from diploid strawberry Fragaria vesca. The cladistic analysis indicated that the FaANR was phylogenetically similar to Pyrus and Prunus ANR genes. Protein modeling suggested protein-ligand interactions at active site with NADP binding as the plausible mechanism of action. Conclusion - This is the first report on cloning, expression study and in silico modeling of an anthocyanidin reductase of strawberry. The conditions of in vivo modulation of ANR expression open applied perspectives for commercial production of PAs in strawberry and other berries

    An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities

    Get PDF
    Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the composition of the microbiome when using 16S rRNA gene amplicon sequencing data. The study observed differences in terms of both presence and abundance of organisms and provides a resource for ensuring reproducible pipeline development and application. The observed differences were especially prevalent when using custom databases and applying high stringency operational taxonomic unit (OTU) cut-off limits. In order to apply sequencing approaches with greater accuracy, the impact of different analytical steps needs to be clearly delineated and solutions devised to harmonise microbiome analysis results

    Coherent emission of light by thermal sources

    No full text
    International audienceA thermal light-emitting source, such as a black body or the incandescent filament of a light bulb, is often presented as a typical example of an incoherent source and is in marked contrast to a laser. Whereas a laser is highly monochromatic and very directional, a thermal source has a broad spectrum and is usually quasi-isotropic. However, as is the case with many systems, different behaviour can be expected on a microscopic scale. It has been shown recently that the field emitted by a thermal source made of a polar material is enhanced by more than four orders of magnitude and is partially coherent at a distance of the order of 10 to 100nm. Here we demonstrate that by introducing a periodic microstructure into such a polar material (SiC) a thermal infrared source can be fabricated that is coherent over large distances (many wavelengths) and radiates in well defined directions. Narrow angular emission lobes similar to antenna lobes are observed and the emission spectra of the source depends on the observation angle--the so-called Wolf effect. The origin of the coherent emission lies in the diffraction of surface-phonon polaritons by the grating
    corecore