455 research outputs found

    Heteropolymeric Triplex-Based Genomic Assay® to Detect Pathogens or Single-Nucleotide Polymorphisms in Human Genomic Samples

    Get PDF
    Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are “canonical triplexes”. Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays

    Assessing the contribution of the herpes simplex virus DNA polymerase to spontaneous mutations

    Get PDF
    BACKGROUND: The thymidine kinase (tk) mutagenesis assay is often utilized to determine the frequency of herpes simplex virus (HSV) replication-mediated mutations. Using this assay, clinical and laboratory HSV-2 isolates were shown to have a 10- to 80-fold higher frequency of spontaneous mutations compared to HSV-1. METHODS: A panel of HSV-1 and HSV-2, along with polymerase-recombinant viruses expressing type 2 polymerase (Pol) within a type 1 genome, were evaluated using the tk and non-HSV DNA mutagenesis assays to measure HSV replication-dependent errors and determine whether the higher mutation frequency of HSV-2 is a distinct property of type 2 polymerases. RESULTS: Although HSV-2 have mutation frequencies higher than HSV-1 in the tk assay, these errors are assay-specific. In fact, wild type HSV-1 and the antimutator HSV-1 PAA(r)5 exhibited a 2–4 fold higher frequency than HSV-2 in the non-HSV DNA mutatagenesis assay. Furthermore, regardless of assay, HSV-1 recombinants expressing HSV-2 Pol had error rates similar to HSV-1, whereas the high mutator virus, HSV-2 6757, consistently showed signficant errors. Additionally, plasmid DNA containing the HSV-2 tk gene, but not type 1 tk or LacZ DNA, was shown to form an anisomorphic DNA stucture. CONCLUSIONS: This study suggests that the Pol is not solely responsible for the virus-type specific differences in mutation frequency. Accordingly, it is possible that (a) mutations may be modulated by other viral polypeptides cooperating with Pol, and (b) the localized secondary structure of the viral genome may partially account for the apparently enhanced error frequency of HSV-2

    Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I

    Get PDF
    The Type I restriction-modification enzyme EcoR124I is an archetypical helicase-based dsDNA translocase that moves unidirectionally along the 3′–5′ strand of intact duplex DNA. Using a combination of ensemble and single-molecule measurements, we provide estimates of two physicochemical constants that are fundamental to a full description of motor protein activity—the ATP coupling efficiency (the number of ATP consumed per base pair) and the step size (the number of base pairs transported per motor step). Our data indicate that EcoR124I makes small steps along the DNA of 1 bp in length with 1 ATP consumed per step, but with some uncoupling of the ATPase and translocase cycles occurring so that the average number of ATP consumed per base pair slightly exceeds unity. Our observations form a framework for understanding energy coupling in a great many other motors that translocate along dsDNA rather than ssDNA

    Targeted kinase inhibition relieves slowness and tremor in a Drosophila model of LRRK2 Parkinson’s disease

    Get PDF
    Disease models: A reflex reaction A simple reflex in flies can be used to test the effectiveness of therapies that slow neurodegeneration in Parkinson’s disease (PD). Christopher Elliott and colleagues at the University of York in the United Kingdom investigated the contraction of the proboscis muscle which mediates a taste behavior response and is regulated by a single dopaminergic neuron. Flies bearing particular mutations in the PD-associated gene leucine-rich repeat kinase 2 (LRRK2) in dopaminergic neurons lost their ability to feed on a sweet solution. This was due to the movement of the proboscis muscle becoming slower and stiffer, hallmark features of PD. The authors rescued the impaired reflex reaction by feeding the flies l-DOPA or LRRK2 inhibitors. These findings highlight the proboscis extension response as a useful tool to identify other PD-associated mutations and test potential therapeutic compounds

    Quality changes and shelf-life prediction of a fresh fruit and vegetables purple smoothie

    Get PDF
    The sensory, microbial and bioactive quality changes of untreated (CTRL) and mild heat−treated (HT; 90 ºC/45 s) smoothies were studied and modelled throughout storage (5, 15 and 25 ºC). The overall acceptability was better preserved in HT samples being highly correlated (hierarchical clustering) with the flavour. The sensory quality data estimated smoothie shelf−life (CTRL/HT) of 18/55 (at 5 ºC), 4.5/12 (at 15 ºC), 2.4/5.8 (at 25 ºC) days. The yeast and moulds growth rate was lower in HT compared to CTRL while a lag phase for mesophiles/psychrophiles was observed in HT−5/15 ºC. HT and 5 ºC−storage stabilized the phenolics content. FRAP reported the best correlation (R2=0.94) with the studied bioactive compounds, followed by ABTS (R2=0.81) while DPPH was the total antioxidant capacity method with the lowest adjustment (R2=0.49). Conclusively, modelling was used to estimate the shelf−life of a smoothie based on quality retention after a short time−high temperature heat treatment that better preserved microbial and nutritional quality during storage.The financial support of this research was provided by the Ministerio Español de Economía y Competitividad MINECO (Projects AGL2013−48830−C2−1−R and AGL2013−48993−C2−1−R) and by FEDER funds. G.A. González−Tejedor thanks to Panamá Government for the scholarship to carry out his PhD Thesis. A. Garre (BES−2014−070946) is grateful to the MINECO for awarding him a pre−doctoral grant. We are also grateful to E. Esposito and N. Castillejo for their skilful technical assistance

    Nurse staffing, direct nursing care hours and patient mortality in Taiwan: the longitudinal analysis of hospital nurse staffing and patient outcome study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies over the past decades have shown an association between nurse staffing and patient outcomes, however, most of these studies were conducted in the West. Accordingly, the purpose of this study aimed to provide an overview of the research/evidence base which has clarified the relationship between nurse staffing and patient mortality of acute care hospital wards under a universal health insurance system and attempted to provide explanations for some of the phenomena that are unique in Taiwan.</p> <p>Methods</p> <p>Through stratified random sampling, a total of 108 wards selected from 32 hospitals in Taiwan were collected over a consecutive seven month period. The mixed effect logit model was used to explore the relationship between nurse staffing and patient mortality.</p> <p>Results</p> <p>The medians of direct-nursing-care-hour, and nurse manpower were 2.52 h, and 378 persons, respectively. The OR for death between the long direct-nursing-care-hour (> median) group and the short direct-nursing-care-hour (≦median) group was 0.393 (95% CI = [0.245, 0.617]). The OR for death between the high (> median) and the low (≦median) nurse manpower groups was 0.589 (95% CI = [0.381, 0.911]).</p> <p>Conclusions</p> <p>Findings from this study demonstrate an association of nurse staffing and patient mortality and are consistent with findings from similar studies. These findings have policy implications for strengthening the nursing profession, nurse staffing, and the hospital quality associated with nursing. Additional research is necessary to demonstrate adequate nurse staffing ratios of different wards in Taiwan.</p

    Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples

    Get PDF
    Numerous studies are currently underway to characterize the microbial communities inhabiting our world. These studies aim to dramatically expand our understanding of the microbial biosphere and, more importantly, hope to reveal the secrets of the complex symbiotic relationship between us and our commensal bacterial microflora. An important prerequisite for such discoveries are computational tools that are able to rapidly and accurately compare large datasets generated from complex bacterial communities to identify features that distinguish them

    Effects of Payena dasyphylla (Miq.) on hyaluronidase enzyme activity and metalloproteinases protein expressions in interleukin-1beta stimulated human chondrocytes cells

    Get PDF
    Background: Hyaluronidases have been found as the target enzymes in the development of osteoarthritis (OA) disease. While there is still no curative treatment for this disease, recent studies on the treatment of OA were focused on the effectiveness of natural products which are expected to improve the symptoms with minimal side effects. The aim of this study was to screen selected Malaysian plants on their anti-hyaluronidase activity as well as to evaluate the active plant and its derived fractions on its potential anti-arthritic and antioxidant activities.Methods: A total of 20 methanolic crude extracts (bark and leaf) from ten different plants were screened using a colorimetric hyaluronidase enzymatic assay. The active plant extract (Payena dasyphylla) was then studied for its hyaluronidase inhibitory activity in the interleukin-1β (IL-1β) stimulated human chondrocytes cell line (NHAC-kn) using zymography method. The Payena dasyphylla methanolic bark extract was then fractionated into several fractions in where the ethyl acetate (EA) fraction was evaluated for its inhibitory effects on the HYAL1 and HYAL2 gene expressions using reverse transcription-polymerase chain reaction (RT-PCR) technique. While the MMP-3 and MMP-13 protein expressions were evaluated using western blot method. The phenolic and flavonoid contents of the three fractions as well as the antioxidant property of the EA fraction were also evaluated.Results: Bark extract of Payena dasyphylla (100 μg/ml) showed the highest inhibitory activity against bovine testicular hyaluronidase with 91.63%. The plant extract also inhibited hyaluronidase expression in the cultured human chondrocyte cells in response to IL-1β (100 ng/ml). Similarly, treatment with Payena dasyphylla ethyl acetate (EA) fraction (100 μg/ml) inhibited the HYAL1 and HYAL2 mRNA gene expressions as well as MMP-3 and MMP-13 protein expression in a dose dependent manner. Payena dasyphylla EA fraction has demonstrated the highest amount of phenolic and flavonoid content with 168.62 ± 10.93 mg GAE/g and 95.96 ± 2.96 mg RE/g respectively as compared to water and hexane fractions. In addition, the Payena dasyphylla EA fraction showed strong antioxidant activity with IC50 value of 11.64 ± 1.69 μg/mL.Conclusion: These findings have shown that Payena dasyphylla might contained potential phenolic compounds that inhibiting the key enzyme in osteoarthritis development, which is the hyaluronidase enzyme through interruption of HYAL1 and HYAL1 gene expressions. The degradation of cartilage could also be inhibited by the plant through suppression of MMP-3 and MMP-13 protein expressions. We also reported that the inhibitory effect of Payena dasyphylla on hyaluronidase activity and expression might be due to its anti-oxidant property

    Influences of polymorphic variants of DRD2 and SLC6A3 genes, and their combinations on smoking in Polish population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms in dopaminergic genes may influence cigarette smoking by their potential impact on dopamine reward pathway function. <it>A1 </it>allele of <it>DRD2 </it>gene is associated with a reduced dopamine D2 receptor density, and it has been hypothesised that <it>A1 </it>carriers are more vulnerable to smoking. In turn, the 9-repeat allele of dopamine transporter gene (<it>SLC6A3</it>) has been associated with a substantial reduction in dopamine transporter, what might result in the higher level of dopamine in the synaptic cleft, and thereby protective role of this allele from smoking. In the present study we investigated whether polymorphic variants of <it>DRD2 </it>and <it>SLC6A3 </it>genes and their combinations are associated with the smoking habit in the Polish population.</p> <p>Methods</p> <p>Genotyping for <it>Taq</it>I<it>A </it>polymorphism of <it>DRD2 </it>and <it>SLC6A3 </it>VNTR polymorphism was performed in 150 ever-smokers and 158 never-smokers. The association between the smoking status and smoking phenotypes (related to the number of cigarettes smoked daily and age of starting regular smoking), and genotype/genotype combinations was expressed by ORs together with 95% CI. Alpha level of 0.05, with Bonferroni correction whenever appropriate, was used for statistical significance.</p> <p>Results</p> <p>At the used alpha levels no association between <it>DRD2 </it>and <it>SLC6A</it>3 genotypes and smoking status was found. However, <it>A1 </it>allele carriers reported longer abstinence periods on quitting attempts than non-carriers (p = 0.049). The ORs for heavier smoking were 0.38 (0.17-0.88), p = 0.023, and 0.39 (0.17-0.88), p = 0.021 in carriers compared to non-carriers of <it>A1 </it>or <it>*9 </it>allele, respectively, and the OR for this smoking phenotype was 8.68 (2.47-30.46), p = 0.0005 for the <it>A1</it>-/<it>9</it>- genotype combination, relatively to the <it>A1</it>+/<it>9</it>+. Carriers of <it>*9 </it>allele of <it>SLC6A3 </it>had over twice a lower risk to start smoking before the age of 20 years compared to non-carriers (sex-adjusted OR = 0.44; 95% CI: 0.22-0.89; p = 0.0017), and subjects with <it>A1-/9- </it>genotype combination had a higher risk for staring regular smoking before the age of 20 years in comparison to subjects with <it>A1+/9+ </it>genotype combination (sex-adjusted OR = 3.79; 95% CI:1.03-13.90; p = 0.003).</p> <p>Conclusion</p> <p>Polymorphic variants of <it>DRD2 </it>and <it>SLC6A3 </it>genes may influence some aspects of the smoking behavior, including age of starting regular smoking, the level of cigarette consumption, and periods of abstinence. Further large sample studies are needed to verify this hypothesis.</p
    corecore