10,809 research outputs found
Programmable active pixel sensor to investigate neural interactions within the retina
Detection of the visual scene by the eye and the resultant neural interactions of the retina-brain system give us our perception of sight. We have developed an Active Pixel Sensor (APS) to be used as a tool for both furthering understanding of these interactions via experimentation with the retina and to make developments towards a realisable retinal prosthesis. The sensor consists of 469 pixels in a hexagonal array. The pixels are interconnected by a programmable neural network to mimic lateral interactions between retinal cells. Outputs from the sensor are in the form of biphasic current pulse trains suitable to stimulate retinal cells via a biocompatible array. The APS will be described with initial characterisation and test results
EEG markers for early detection and characterization of vascular dementia during working memory tasks
The aim of the this study was to reveal markers using spectral entropy (SpecEn), sample entropy (SampEn) and Hurst Exponent (H) from the electroencephalography (EEG) background activity of 5 vascular dementia (VaD) patients, 15 stroke-related patients with mild cognitive impairment (MCI) and 15 control healthy subjects during a working memory (WM) task. EEG artifacts were removed using independent component analysis technique and wavelet technique. With ANOVA (p < 0.05), SpecEn was used to test the hypothesis of slowing the EEG signal down in both VaD and MCI compared to control subjects, whereas the SampEn and H features were used to test the hypothesis that the irregularity and complexity in both VaD and MCI were reduced in comparison with control subjects. SampEn and H results in reducing the complexity in VaD and MCI patients. Therefore, SampEn could be the EEG marker that associated with VaD detection whereas H could be the marker for stroke-related MCI identification. EEG could be as a valuable marker for inspecting the background activity in the identification of patients with VaD and stroke-related MCI
Classification enhancement for post-stroke dementia using fuzzy neighborhood preserving analysis with QR-decomposition
The aim of the present study was to discriminate the electroencephalogram (EEG) of 5 patients with vascular dementia (VaD), 15 patients with stroke-related mild cognitive impairment (MCI), and 15 control normal subjects during a working memory (WM) task. We used independent component analysis (ICA) and wavelet transform (WT) as a hybrid preprocessing approach for EEG artifact removal. Three different features were extracted from the cleaned EEG signals: spectral entropy (SpecEn), permutation entropy (PerEn) and Tsallis entropy (TsEn). Two classification schemes were applied - support vector machine (SVM) and k-nearest neighbors (kNN) - with fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR) as a dimensionality reduction technique. The FNPAQR dimensionality reduction technique increased the SVM classification accuracy from 82.22% to 90.37% and from 82.6% to 86.67% for kNN. These results suggest that FNPAQR consistently improves the discrimination of VaD, MCI patients and control normal subjects and it could be a useful feature selection to help the identification of patients with VaD and MCI
Stroke-related mild cognitive impairment detection during working memory tasks using EEG signal processing
The aim of the present study was to reveal markers from the electroencephalography (EEG) using approximation entropy (ApEn) and permutation entropy (PerEn). EEGs' of 15 stroke-related patients with mild cognitive impairment (MCI) and 15 control healthy subjects during a working memory (WM) task have EEG artifacts were removed using a wavelet (WT) based method. A t-test (p <; 0.05) was used to test the hypothesis that the irregularity (ApEn and PerEn) in MCIs was reduced in comparison with control subjects. ApEn and PerEn showed reduced irregularity in the EEGs of MCI patients. Therefore, ApEn and PerEn could be used as markers associated with MCI detection and identification and the EEG could be a valuable tool for inspecting the background activity in the identification of patients with MCI
Measuring and modelling the energy cost of reconfiguration in sensor networks [forthcoming]
As Wireless Sensor Networks (WSN) must operate for long periods on a limited power budget, estimating the energy cost of software operations is critical. Contemporary reconfiguration approaches for WSN allow for software evolution at various granularities; from reflashing of a complete software image, through replacement of complete applications, to the reconfiguration of individual software components. This paper contributes a generic model for measuring and modelling the energy cost of reconfiguration in WSN. We validate that this model is accurate in the face of different hardware platforms, software stacks and software encapsulation approaches. We have embedded this model in the LooCI middleware, resulting in the first energy aware reconfigurable component model for sensor networks. We evaluate our approach using two real-world WSN applications and demonstrate that our model predicts the energy cost of reconfiguration with 93% accuracy. Using this model we demonstrate that selecting the most appropriate software modularisation approach is key to minimising energy consumption
Local variation of hashtag spike trains and popularity in Twitter
We draw a parallel between hashtag time series and neuron spike trains. In
each case, the process presents complex dynamic patterns including temporal
correlations, burstiness, and all other types of nonstationarity. We propose
the adoption of the so-called local variation in order to uncover salient
dynamics, while properly detrending for the time-dependent features of a
signal. The methodology is tested on both real and randomized hashtag spike
trains, and identifies that popular hashtags present regular and so less bursty
behavior, suggesting its potential use for predicting online popularity in
social media.Comment: 7 pages, 7 figure
Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.
The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
Magnetism and its microscopic origin in iron-based high-temperature superconductors
High-temperature superconductivity in the iron-based materials emerges from,
or sometimes coexists with, their metallic or insulating parent compound
states. This is surprising since these undoped states display dramatically
different antiferromagnetic (AF) spin arrangements and Nel
temperatures. Although there is general consensus that magnetic interactions
are important for superconductivity, much is still unknown concerning the
microscopic origin of the magnetic states. In this review, progress in this
area is summarized, focusing on recent experimental and theoretical results and
discussing their microscopic implications. It is concluded that the parent
compounds are in a state that is more complex than implied by a simple Fermi
surface nesting scenario, and a dual description including both itinerant and
localized degrees of freedom is needed to properly describe these fascinating
materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in
Nature Physic
- …
