We draw a parallel between hashtag time series and neuron spike trains. In
each case, the process presents complex dynamic patterns including temporal
correlations, burstiness, and all other types of nonstationarity. We propose
the adoption of the so-called local variation in order to uncover salient
dynamics, while properly detrending for the time-dependent features of a
signal. The methodology is tested on both real and randomized hashtag spike
trains, and identifies that popular hashtags present regular and so less bursty
behavior, suggesting its potential use for predicting online popularity in
social media.Comment: 7 pages, 7 figure