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Abstract—As Wireless Sensor Networks (WSN) must
operate for long periods on a limited power budget,
estimating the energy cost of software operations is critical.
Contemporary reconfiguration approaches for WSN allow
for software evolution at various granularities; from re-
flashing of a complete software image, through replace-
ment of complete applications, to the reconfiguration of
individual software components. This paper contributes a
generic model for measuring and modelling the energy cost
of reconfiguration in WSN. We validate that this model
is accurate in the face of different hardware platforms,
software stacks and software encapsulation approaches.
We have embedded this model in the LooCI middleware,
resulting in the first energy aware reconfigurable compo-
nent model for sensor networks. We evaluate our approach
using two real-world WSN applications and demonstrate
that our model predicts the energy cost of reconfiguration
with 93% accuracy. Using this model we demonstrate that
selecting the most appropriate software modularisation
approach is key to minimising energy consumption.

Index Terms—Wireless Sensor Networks, Software Re-
configuration, Energy Modelling.

I. INTRODUCTION

Software reconfiguration is a critical issue for
Wireless Sensor Networks (WSN) due to two fac-
tors. Firstly, the cost and complexity of deploying
a WSN necessitates that infrastructure can support
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multiple applications throughout its lifetime [1].
Secondly, the resource constraints of WSN necessi-
tate optimisation of software configurations to suit
changing environmental conditions. As WSN are
often deployed at scale in inaccessible or dangerous
locations such as flood plains [2], all reconfiguration
must be enacted remotely. Furthermore, as WSN
must execute for long periods on a limited power
budget it is important to accurately predict the
energy cost of reconfiguration actions in order to
plan system configuration.

Research from the field of WSN has resulted in
a variety of software evolution approaches, which
may be categorised by their granularity:

Monolithic reconfiguration approaches allow for
reconfiguration through replacement of the entire
software image running on each mote, including all
operating system (OS) and application functionality.
This approach is exemplified by TinyOS [3].

Application-based approaches, such as Con-
tiki [4] and Squawk [5] separate OS functionality
from application functionality, allowing for the re-
placement of complete application images.

Component-based approaches such as Open-
COM [6] and LooCI [7] allow for the replacement
of individual components within an application at
runtime.

Contemporary software evolution techniques for
WSN have two key shortcomings. First, they do
not quantify the energy cost of reconfiguration,
which makes it difficult for application developers
to reason over reconfiguration options. Second, the
relative costs of each reconfiguration approach have
yet to be fully evaluated in realistic WSN scenarios.

In contrast to our prior work [8], this paper pro-
vides a complete treatment of the energy modelling
problem. Specifically, we contribute a generic model
and methodology for calculating the energy cost
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of software evolution in WSN. We evaluate our
approach on three different WSN hardware plat-
forms (SPOT [9], Raven [10] and Zigduino [11]),
using different programming languages (C and Java
ME), different encapsulation approaches (ELF and
Compact ELF) and operating systems (Contiki [4],
SQUAWK [5] and TinyOS [3]). We find that our
energy model has an average accuracy of 93%.

The second unique contribution of this paper is an
exploration of the efficiency of each class of soft-
ware evolution approach (monolithic, application-
based and component-based) for two real-world
applications: waste bin tampering and smart park-
ing. Our results indicate that different approaches
offer distinct energy trade-offs during configuration,
thus reconfiguration of software must be carefully
considered by the software developer.

The remainder of this paper is structured as fol-
lows: Section II provides background on reconfigu-
ration and software evolution in WSN. Section III
describes the case-study scenarios. Section IV de-
scribes a generic model and associated methodology
for calculating the energy cost of reconfiguration.
Section V models the LooCI middleware running
on various hardware/software stacks. Section VI
evaluates the accuracy of this energy model in two
real-world scenarios. Section VII discusses related
research. Finally, Section VIII concludes and dis-
cusses directions for future work.

II. RECONFIGURATION IN WSN

In this section, we provide key examples of
software evolution in WSN and from these distill
requirements for energy-aware reconfiguration.

The SICS factory surveillance system described
in [12] used a 25-mote WSN to monitor conditions
in a factory complex. Motes were powered by
limited batteries and all application functionality
was implemented as a set of Contiki modules [4].
In this paper, the authors highlight the need for both
autonomic adaptation and heteronomous evolution
of deployed application functionality to meet chang-
ing application requirements. The GridStix flood
monitoring and warning system [2] was deployed
on the river Ribble in northern England and the
river Dee in northern Wales. The system used a
heterogeneous architecture composed of embedded
Linux boards powered by batteries and solar panels
to monitor conditions on a 1KM stretch of river. All

application functionality was implemented using the
OpenCOM component model. In [2] Grace et al.
demonstrate that component-based adapation can
be used to optimise application behaviour to meet
changing environmental conditions. The Cambridge
badger monitoring experiment [13] used a WSN to
monitor the behaviour of badgers in a nature reserve.
The application used a heterogeneous architecture
with RFID tags deployed on the collars of badgers,
static RFID detection stations and battery-powered
motes that monitored the local microclimate. Ap-
plication functionality was implemented as Contiki
application modules [4]. After deployment, software
was subject to heteronomous evolution based upon
input from domain experts and to accommodate
changes in the hardware platform.

Considering the examples of software recon-
figuration discussed above, it can be seen that
reconfiguration serves two general purposes: (i.)
to heteronomously evolve application functionality
to meet changing requirements and (ii.) to auto-
matically optimise application functionality to suit
changing environmental conditions. Successfully
enacting energy-aware reconfiguration in resource
constrained mote environments gives rise to three
requirements:

1) Accurate Energy Models enable informed
reasoning over software adaptations or evolu-
tion, it is critical to consider the energy cost
of reconfiguration actions.

2) Support for Heterogeneity is critical as the
applications discussed above run on different
hardware, operating systems and languages.

3) Guidance on selecting reconfiguration ap-
proaches is required to assist developers in
choosing an encapsulation and modularisation
approach.

III. CASE STUDY APPLICATIONS

We introduce two case-study applications: smart
parking and waste bin tampering. These case-study
applications were provided by OneAccess, an in-
ternational company with facilities located in Bel-
gium. OneAccess have developed a common hard-
ware/software network architecture that is used to
support both case studies. This architecture features
a common networking approach and four tiers of
functionality:

1) Network: IPv6 is supported end-to-end using
RPL [14], which updates the routing tables
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of each mote in the router tier and connects
these to the sensor tier. All motes use industry
standard IEEE 802.15.4 radios.

2) Sensor tier: based on a custom embedded
mote platform that offers a 16MHz Atmel
MCU, 16KB RAM and 128KB flash memory.
Sensor motes monitor their local environment,
execute simple analysis algorithms on sensor
data and send the results to the router tier. The
sensor tier does not participate in multi-hop
routing. Instead all sensor nodes are leaves
which connect to a node in the router tier.
Sensor motes are powered by two AA batter-
ies, which must last for over 5 years without
replacement to ensure economic viability.

3) Router tier: based on the same embedded
mote platform as the sensor tier, router motes
offer multi-hop routing functionality, relaying
data between the sensor tier and the gateway
tier . The routers form a tree topology with
a gateway as the root and the sensors as
the leaves. The routers are installed in fixed
locations and are powered from the electricity
grid.

4) Gateway tier: based on an Alix embedded
PC platform, which offers a 500MHz CPU,
256MB RAM, 802.15.4 and 802.11 network-
ing. The gateway runs embedded Linux and
Java SE. The gateway is powered directly
from the electricity grid and bridges the WSN
running RPL over 802.15.4 and community
wireless networks running standard 802.11
WiFi.

5) Back-end tier: is comprised of powerful
servers on high-speed connections, which
gather data from all sensors and expose pro-
cessed results to users via a web interface.

In order to minimise costs, OneAccess uses com-
mon routing, gateway and back-end infrastructure to
support both sensing applications. The sensor mote
tier is then extended as needed by specific sensing
applications.

A. Smart Parking Application

The smart parking application makes parking
more efficient by using motes to monitor free park-
ing spaces and communicating this information to
drivers via their smart phone.

Sensor motes are embedded in a durable case
known as a ‘speeddisk’, which is commonly de-
ployed on roads to slow down traffic. The speed
disk is attached to the concrete at street level and is
capable of withstanding the pressure of cars driving
over it. Each mote is equipped with a magnetometer,
which measures the local magnetic field on three
axes and an Infra-Red (IR) distance sensor. The
magnetometer is polled once per second to detect
whether a car has arrived or left. The battery level
of the mote is polled once per minute. When a car
arrives or leaves, an update message containing a
boolean value representing parking space availabil-
ity and the current battery level is forwarded to the
routing tier and from there to the gateway. The back
end system then publishes updated parking space
availability to the web user interface.

B. Waste Bin Tampering Application
The waste bin tampering application monitors

when public waste bins are opened and closed in
order to detect tampering. The bins should only be
opened by staff, whose schedule is known. Where
the opening time of the bin differs from the staff
schedule, tampering is identified and a cleaning
crew is dispatched to fix the problem.

For this application, sensor motes are extended
with a magnet-activated reed switch which detects
when the bin is opened or closed. When a hardware
interrupt is generated by the reed switch, the time
that the bin was opened is stored in flash memory.
This log of open/close times is sent to the gateway
every 24 hours.

As with the smart parking system, the waste bin
tampering system has been deployed for testing at
small scale in the city of Ghent. OneAccess antic-
ipate that further reconfiguration will be necessary
to optimize system behaviour based upon observed
environmental conditions.

IV. ENERGY AWARE RECONFIGURATION MODEL

The following sections introduce our generic re-
configuration model and describes how this model
is parameterized for a specific platform.

A. Generic Modeling Approach
The energy cost of a reconfiguration can be

broken down into the cost of discovering the cur-
rent configuration using introspection, the cost of
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deploying new functionality and the cost of config-
uring the deployed functionality. The total energy
consumption of any reconfiguration can therefore
be defined as:

ER = ED + EI + EC . (1)

Where ED is the energy consumption of the com-
ponent deployment, EI is the energy consumption
of introspection calls and EC is the energy con-
sumption of configuration calls. It is intuitive that
the energy consumed during the deployment of new
software functionality will have a positive linear
relationship to the size of the software that is being
deployed. ED may thus be calculated using the
following linear regression equation:

ED =
nX

i=1

((CS i ⇥ �1) + �0). (2)

Where �0 is the minimum cost of a deployment
operation, �1 defines the relationship between com-
ponent size and additional energy consumption, CS i

refers to the size of the ith component and n denotes
the number of component deployments.

The energy consumption of introspection (EI) and
control (EC) operations are simply the sum of the
cost of each operation, given by:

EI =
nX

i=1

Ei. (3)

EC =
nX

i=1

Ei. (4)

Where n refers to the number of introspection or
control commands and Ei denotes the energy con-
sumption of ith introspection or control commands.
This generic model must be calibrated for each
hardware/software stack that is modelled.

B. Energy Calibration Methodology

We use the energy measurement methodology pre-
sented in [8]. This method requires a digital output
pin on the test mote platform and the ability to
instrument the code under test to signal when mea-
surement should start and stop. A Digital Storage

Oscilloscope (DSO) is used to estimate the power
consumption of the mote under test. A digital IO
pin is toggled on the mote platform to indicate
the starting and the ending point of the API call.
The energy consumed by the software API call is
derived using the Ohm’s law. We refer the reader to
[8] for a detailed description of the measurement
methodology.

V. MODELING THE LOOCI MIDDLEWARE ON
HETEROGENEOUS MOTES

We now calibrate the generic energy model and en-
ergy measurement methodology to create a specific
energy model for the LooCI middleware running on
the Zigduino [11], Raven [10] and SPOT [9] motes.

A. The LooCI Middleware

We model the reconfiguration API of the Loosely-
coupled Component Infrastructure (LooCI) [7], a
component-based middleware for sensor networks
that was developed by our group. LooCI provides
a good test platform as it runs on heterogeneous
hardware/software stacks and thus affords the op-
portunity to demonstrate that our energy modeling
approach is generic (i.e. not tied to a specific hard-
ware platform, operating system or programming
language). The complete LooCI reconfiguration API
is shown in Listing 1. Full details are provided
in [7].

Listing 1: The core LooCI API

CompID deploy(ComponentFile, NodeID)

Boolean removeComponent(CompID, NodeID)

Boolean deactivate(CompID, NodeID)

Boolean activate(CompoID, NodeID)

Boolean wireLocal(EventType, SourceCompID,

DestCompID, NodeID)

Boolean wireFrom(EventType, SrcCompID, SrcNodeID,

DestCompID, DestNodeID)

Boolean wireTo(EventType, SrcCompID, SrcNodeID,

DestNodeID)

CompID[] getComponentIDs(NodeID)

String getComponentType(NodeID, CompID)

State getComponentState(NodeID, CompID)

Event[] getInterfaces(NodeID, CompID)

Event[] getReceptacles(NodeID, CompID)

LooCI currently supports three underlying plat-
forms: Contiki [4], Squawk [5] and OSGi [15].
LooCI layers standard support for remote compo-
nent deployment, introspection and configuration on
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top of these heterogeneous systems, exposing the
common API shown above. Deployment commands
allow for the insertion and removal of software
components. Introspection commands allow for the
discovery of what components are present on a
node, their interfaces, state and bindings. Finally,
Configuration commands allow for the activation,
deactivation and binding of components. All com-
mands may be enacted remotely at runtime.

B. Mote Platforms

We model the energy cost of the LooCI reconfigu-
ration API on three platforms:

The Zigduino offers a 16MHz Atmega128RFA1
MCU with built-in 802.15.4 radio, 16KB RAM
and 128KB flash [11]. The Zigduino runs either
TinyOS [3] or Contiki OS [4] and the LooCI mid-
dleware [7]. All software is implemented in C.

The Raven offers a 20MHz ATmega1284PV MCU,
16KB RAM, 128KB flash and AT86RF230 IEEE
802.15.4 radio [10]. The Raven motes run an iden-
tical software stack to the Zigdunio.

The SPOT offers a 180MHz ARM920T MCU,
512KB RAM, 4MB flash and CC2420 IEEE
802.15.4 radio [9]. The SPOT motes run the Squawk
OS and JVM [5] and the LooCI middleware [7]. All
software is implemented in Java.

As can be seen from the specifications above, these
motes are heterogeneous in terms of hardware re-
sources, operating systems and languages and are
thus an ideal selection of sensing technologies on
which to demonstrate the generic nature of our
approach.

C. Energy Models

As described in Section IV-A, any reconfiguration
action in a reconfigurable component model such
as LooCI is composed of a set of deployment
and configuration operations, while introspection
commands allow component configurations to be
validated before and after reconfiguration.

As expected, deployment operations consume or-
ders of magnitude more energy than introspection
or configuration commands due to the transmis-
sion of component functionality. This is shown in

Figure 1(a), 1(c) and 1(e), wherein the red cross
shows the average energy cost of the component
deployment and the red line indicates the 95% con-
fidence interval. The maximum size of an over-the-
air deployable component is 3.2KB on the Zigduino
and Raven, while the maximum component size on
the SPOT is 40KB.

Figure 1(b), 1(d) and 1(f) shows the energy cost
of non-deployment remote API calls for Zigduino,
Raven and SPOT hardware platforms respectively.
We have represented the 95% confidence interval
with blue bars for each API call. The average energy
cost of non-deployment API calls follows a similar
trend on both of our experimental platforms, except
that the energy cost of removing a component con-
sumes a large amount of energy on the SPOT due to
the energy used when accessing flash memory. The
average energy consumption is 3mJ for the Raven,
13mJ for the Zigduino and 225mJ for the SPOT.
The wide variation in energy consumption clearly
demonstrates the need for per-platform calibration
of the energy model. Particularly when one consid-
ers that the specifications of the Raven and Zigduino
are very close, yet the API calls to the Zigduino
consume more than four times as much power.

Figure 1(a), 1(c) and 1(e) shows that, there is a
positive relationship between the energy cost of
deployment and component size. A linear regression
equation was computed from our sample data and
is shown by the blue line in Figure 1(a), 1(c) and
1(e). Our linear energy model for the component
deployment captures the relationship between the
energy cost of the deployment and the component
size. This model can therefore be used to obtain
the energy cost of any component deployment for
Zigduino, Raven and SPOT hardware platforms.

VI. IMPLEMENTATION AND EVALUATION

All reconfiguration in LooCI is enacted via a man-
ager component which runs on the network gateway.
The manager accepts and executes simple scripts of
reconfiguration API calls. We extended this script
interpreter to provide energy cost estimates for all
reconfiguration scripts using the model presented
in the previous section. This provides developers
with a simple mechanism to assess the energy costs
of reconfiguration actions before they are enacted.
In the following section we explore the accuracy
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Fig. 1: Energy cost of LooCI API calls.
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of the model in predicting the energy cost of
example reconfiguration scripts for our case-study
applications. All experiments report the energy cost
of reconfiguration for a single mote in a one-hop
network.

A. Case-study Evaluation

To evaluate our energy model, four versions of the
smart parking and waste bin tampering applications
were developed. The first version was developed as
a single TinyOS image. The second version was
developed as a single Contiki application. The third
was developed as a single SQUAWK application.
Finally, the fourth was developed as a composition
of LooCI components. A series of reconfiguration
scripts were then run to discover the accuracy of the
energy model and the impact of encapsulation and
modularization on artifact size and energy consump-
tion. All experiments were conducted 10 times.

Experiment 1 - effect of encapsulation on size:
Table I and Table II show the impact of different
encapsulation technologies on code-size. The stan-
dard ELF encapsulation format incurs an average
size overhead of 304% compared to functional code,
while our custom Micro-ELF format reduces this
overhead to 175%. The SQUAWK suite format is
significantly larger than either ELF variant. These
results show the critical importance of appropriate
encapsulation formats in reducing energy consump-
tion.

Experiment 2 - effect of modularisation on
size: As can be seen from Figure 2, monolithic
application implementations are more than twice
as large as component based applications. This is
because all necessary OS-level functionality must
be included with application code. Application-
based implementations have the smallest footprint
for initial configuration, but necessitate larger code
updates during reconfiguration, where component-
based reconfiguration reduces update size by 29%.
Application-based modularization is thus most ef-
ficient for static scenarios, while component-based
modularization will be more efficient for dynamic
scenarios.

Experiment 3 - energy cost of configuration:
This experiment evaluates the costs of remotely
configuring a blank mote with a new application.

In the case of the single-unit application, no con-
figuration is necessary and therefore all energy cost
is due to the deployment of functionality. In the
case of the component-based application, compo-
nents had to be deployed, configured and activated.
The results of our energy evaluation are presented
in Tables III and IV, which shows that (i.) our
energy model is on average 97.83% accurate on
the Raven and 89.23% accurate on the SPOT and
(ii.) initial configuration is least efficient using the
monolithic TinyOS approach, which consumes over
9.3 Joules, while the component-based approach
consumes over 3.4 Joules and an application-based
configuration consumes the least energy at 1.3
Joules. The greater error in predicting the energy
consumption of the SPOT is attributed to the non-
deterministic behaviour of the Squawk JVM. The
poor performance of monolithic configuration is
primarily due to the necessity of including OS
functionality with application code updates.

Experiment 4 - energy cost of reconfiguration:
The second experiment tackles a problem which
emerged for OneAccess during small-scale testing
of their system. The magnetometer sensor was prov-
ing hard to calibrate and so the application was
reconfigured to also use the IR sensor to detect
when cars arrived or left. In the case of a com-
ponent based application, this change necessitates
only the deployment, wiring and activation of a
new IR sensor component. In the case of applica-
tion based development, it requires redeployment
of the complete application image. In the case
of monolithic development this requires monolithic
reflashing. The results of our energy evaluation are
presented in Tables III and IV, which show that:
(i.) our energy model is 96.33% accurate on the
Raven and 93.08% accurate on the SPOT and (ii.)
component-based reconfiguration results in energy
savings of between 18.98% and 32.52% compared
to a single application implementation. The mono-
lithic approach of TinyOS is very inefficient for re-
configuration, consuming 6.4 times as much energy
as the component-based approach.

In summary, it can be seen that our generic en-
ergy modelling approach is accurate for application-
based and component-based applications running on
heterogeneous OS and hardware platforms. Further-
more, our analysis reveals that while component-
based reconfiguration has a significantly higher
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Contiki SQUAWK
Data Size Standard ELF Micro ELF SPOT Suite

(bytes) (bytes) (bytes) (bytes)
Smart Parking

Manager 192 1052 692 2404
Sensor 354 1352 934 2256
Filter 240 1124 752 2117

Battery 330 1328 910 2229
Total 1116 4856 3288 9006

Waste Bin Tampering
Manager 464 1536 1074 2443
Sensor 326 1312 894 2061
Battery 330 1328 910 2228

Total 1120 4176 2878 6732

TABLE I: Size of component-based application composition for LooCI.

Contiki SQUAWK
Data Size Standard ELF Compact ELF Suite Size

(bytes) (bytes) (bytes) (bytes)
Smart Parking 484 1686 1176 6289

Waste Bin Tampering 514 1716 1196 6048

TABLE II: Size of the single application implementation for Contiki.

Raven SPOT
Model
(mJ)

Benchmark
(mJ)

Accuracy
(%)

Model
(mJ)

Benchmark
(mJ)

Accuracy
(%)

Smart Parking 3885 3887 99.94 32876 29851 90.79
Bin Tampering 3387 3484 97.21 24594 20612 83.81
Smart Parking

Reconfiguration 1089 1124 96.33 7780 7260 93.08

Average 97.83 Average 89.23

TABLE III: Accuracy of energy model in predicting the cost of over-the-air
configuration and reconfiguration.

Effect of modularisation
(on energy)

Comp-based
(mJ)

App-based
(mJ)

Monolithic
(TinyOS)

(mJ)
Raven

Smart Parking 3887 1311 9408
Bin Tampering 3484 1336 9321
Smart Parking

Reconfiguration 1124 1594 9611

SPOT
Smart Parking 29851 9302 -
Bin Tampering 20612 8847 -
Smart Parking

Reconfiguration 7260 8961 -

TABLE IV: Impact of component-based reconfiguration on application size
and energy consumption.
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Fig. 2: Artefact Size on Zigduino, Raven and SPOT hardware platforms.

initial cost than application-based reconfiguration,
incremental software updates are significantly more
efficient, which over the life-time of the sensor
network is likely to compensate for the initial con-
figuration overhead. In contrast, monolithic devel-
opment methodologies are inefficient for both Over-
The-Air (OTA) configuration and reconfiguration.

VII. RELATED WORK

A. Analytical Methods

Analytical models provide designers with the pos-
sibility of evaluating the lifetime of their WSN
applications in a fast and platform-independent way.
In [16], the authors propose a probabilistic lifetime
energy model based upon the relationship between
the lifetime of a single mote and the whole sensor
network. A different approach is presented in [17]
where a state-based battery model is proposed to
accurately estimate the battery life. A key problem
of these methods is that they only consider the
energy consumption related to packet transmission
and reception. These approaches therefore provide
poor estimates when the energy consumption of
other devices such as a CPU or sensors is sig-
nificant. For example, in the Great Duck Island
experiment [18] it was noted that EEPROM use on
the Mica 2 mote during reprogramming consumed
four times as much energy as transmitting using
the radio. A similar result is evident in our SPOT
energy measurements, which show that radio use
is not the only factor that should be considered

when estimating energy usage. In our view it is
therefore imperative to specifically calibrate any
energy measurement approach for the specific hard-
ware/software platform offered by each mote.

B. Experimental methods

A more commonly-used methodology for measuring
energy consumption is based on the use of an
oscilloscope, an operational circuit connected to the
target node and a program executing on a PC to
analyse the data obtained from the oscilloscope [19],
[20]. We build upon this energy monitoring ap-
proach, while adding software instrumentation to
automate the testing process and providing a model
that accurately predicts the energy consumption of
software operations.

Landsiedel et al. [21] provide a tool called AEON
to model and predict the energy consumption of a
sensor network application. This tool measures the
energy cost of individual hardware component on a
sensor node and use that cost to predict the lifetime
of a TinyOS [22] sensor network application. This
approach has two key limitations. First, the model
requires a white-box understanding of the devices
present on each mote. Second, the approach is tied
to TinyOS [22]. In contrast, our approach may be
applied to any software/hardware stack by following
a simple and uniform energy calibration process.

Sankar et al. [23] compare the performance of WSN
OSs. The software evolution model was found to
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have a direct relationship to reconfiguration effi-
ciency. During the execution phase, the monolithic
configuration performs better than the application
or component-based reconfiguration. However, dur-
ing reconfiguration, more fine-grained approaches
perform significantly better. Our work validates and
complements the results presented in [23] by pro-
viding a more in-depth analysis of reconfiguration
energy costs.

VIII. CONCLUSIONS AND FUTURE WORK

This paper addressed the problem of predicting the
energy cost of reconfiguration operations for WSN
middleware through two contributions: (i.) a generic
energy model and (ii.) the first energy-aware run-
time reconfigurable component model. Evaluation
shows that our energy model accurately predicts
the energy consumed by reconfiguration actions on
three heterogeneous mote platforms: the SPOT [9],
the AVR Raven [10] and the Zigduino [11]. We also
provide guidance on how to select modularisation
and encapsulation approaches based on application
characteristics. In sum, addressing the requirements
highlighted in Section II.

Our future work will extend the work performed
in this paper on system level energy modelling to
consider the runtime energy consumption of appli-
cations.
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