95 research outputs found

    Metabolomics-guided isolation of anti-trypanosomal compounds from endophytic fungi of the mangrove plant Avicennia lanata

    Get PDF
    Endophytic fungi have been explored not just for their ecological functions but also for their secondary metabolites as a new source of these pharmacologically active natural products. Accordingly, many structurally unique and biologically active compounds have been obtained from the cultures of endophytic fungi. Fusarium sp. and Lasiodiplodia theobromae were isolated from the root and stem of the mangrove plant Avicennia lanata, respectively, collected from Terengganu, Malaysia. High-resolution mass spectrometry and NMR spectroscopy were used as metabolomics profiling tools to identify and optimize the production of bioactive secondary metabolites in both strains at different growth stages and culture media. The spectral data was processed by utilizing the MZmine 2.2, a quantitative expression analysis software and an in house MS-Excel macro coupled with the Dictionary of Natural Products databases for dereplication studies. The investigation for the potential bioactive metabolites from a 15-day rice culture of Fusarium sp. yielded four 1,4-naphthoquinone with naphthazarin structures (1-4). On the other hand, the endophytic fungus L. theobromae grown on the 15-day solid rice culture produced dihydroisocoumarins (5 to 8). All the isolated compounds (1 to 8) showed significant activity against Trypanosoma brucei brucei with MIC values of 0.32-12.5 ÎŒM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing the lowest cytotoxicity of only 22.3% and 38.6% of the control values at 100 ÎŒg/mL, respectively. Structure elucidation of the isolated secondary metabolites was achieved using 1D and 2D-NMR and HRESI-MS as well as comparison with literature data

    The major leucyl aminopeptidase of Trypanosoma cruzi (LAPTc) assembles into a homohexamer and belongs to the M17 family of metallopeptidases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pathogens depend on peptidase activities to accomplish many physiological processes, including interaction with their hosts, highlighting parasitic peptidases as potential drug targets. In this study, a major leucyl aminopeptidolytic activity was identified in <it>Trypanosoma cruzi</it>, the aetiological agent of Chagas disease.</p> <p>Results</p> <p>The enzyme was isolated from epimastigote forms of the parasite by a two-step chromatographic procedure and associated with a single 330-kDa homohexameric protein as determined by sedimentation velocity and light scattering experiments. Peptide mass fingerprinting identified the enzyme as the predicted <it>T. cruzi </it>aminopeptidase EAN97960. Molecular and enzymatic analysis indicated that this leucyl aminopeptidase of <it>T. cruzi </it>(LAPTc) belongs to the peptidase family M17 or leucyl aminopeptidase family. LAPTc has a strong dependence on neutral pH, is mesophilic and retains its oligomeric form up to 80°C. Conversely, its recombinant form is thermophilic and requires alkaline pH.</p> <p>Conclusions</p> <p>LAPTc is a 330-kDa homohexameric metalloaminopeptidase expressed by all <it>T. cruzi </it>forms and mediates the major parasite leucyl aminopeptidolytic activity. Since biosynthetic pathways for essential amino acids, including leucine, are lacking in <it>T. cruzi</it>, LAPTc could have a function in nutritional supply.</p

    Network 'small-world-ness': a quantitative method for determining canonical network equivalence

    Get PDF
    Background: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction ('small/not-small') rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model-the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. Methodology/Principal Findings: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S. 1-an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS) model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. Conclusions/Significance: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing

    FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle

    Get PDF
    Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases risk for Crohn’s disease and leprosy. We developed an unbiased liquid chromatography mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic paralogues additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronises mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.Includes ERC. Wellcome Trust and MRC

    The long-term prediction of return to work following serious accidental injuries: A follow up study

    Get PDF
    Background Considerable indirect costs are incurred by time taken off work following accidental injuries. The aim of this study was to predict return to work following serious accidental injuries. Method 121 severely injured patients were included in the study. Complete follow-up data were available for 85 patients. Two weeks post trauma (T1), patients rated their appraisal of the injury severity and their ability to cope with the injury and its job-related consequences. Time off work was assessed at one (T2) and three years (T3) post accident. The main outcome was the number of days of sick leave taken due to the accidental injury. Results The patients' appraisals a) of the injury severity and b) of their coping abilities regarding the accidental injury and its job-related consequences were significant predictors of the number of sick-leave days taken. Injury severity (ISS), type of accident, age and gender did not contribute significantly to the prediction. Conclusions Return to work in the long term is best predicted by the patients' own appraisal of both their injury severity and the ability to cope with the accidental injury

    Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi

    Get PDF
    BACKGROUND: The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the ER membrane. The SRP of metazoans is well characterized and composed of an RNA molecule and six polypeptides. The particle is organized into the S and Alu domains. The Alu domain has a translational arrest function and consists of the SRP9 and SRP14 proteins bound to the terminal regions of the SRP RNA. So far, our understanding of the SRP and its evolution in lower eukaryotes such as protozoa and yeasts has been limited. However, genome sequences of such organisms have recently become available, and we have now analyzed this information with respect to genes encoding SRP components. RESULTS: A number of SRP RNA and SRP protein genes were identified by an analysis of genomes of protozoa and fungi. The sequences and secondary structures of the Alu portion of the RNA were found to be highly variable. Furthermore, proteins SRP9/14 appeared to be absent in certain species. Comparative analysis of the SRP RNAs from different Saccharomyces species resulted in models which contain features shared between all SRP RNAs, but also a new secondary structure element in SRP RNA helix 5. Protein SRP21, previously thought to be present only in Saccharomyces, was shown to be a constituent of additional fungal genomes. Furthermore, SRP21 was found to be related to metazoan and plant SRP9, suggesting that the two proteins are functionally related. CONCLUSIONS: Analysis of a number of not previously annotated SRP components show that the SRP Alu domain is subject to a more rapid evolution than the other parts of the molecule. For instance, the RNA portion is highly variable and the protein SRP9 seems to have evolved into the SRP21 protein in fungi. In addition, we identified a secondary structure element in the Sacccharomyces RNA that has been inserted close to the Alu region. Together, these results provide important clues as to the structure, function and evolution of SRP

    PsRBR1 encodes a pea retinoblastoma-related protein that is phosphorylated in axillary buds during dormancy-to-growth transition

    Get PDF
    In intact plants, cells in axillary buds are arrested at the G1 phase of the cell cycle during dormancy. In mammalian cells, the cell cycle is suppressed at the G1 phase by the activities of retinoblastoma tumor suppressor gene (RB) family proteins, depending on their phosphorylation state. Here, we report the isolation of a pea cDNA clone encoding an RB-related protein (PsRBR1, Accession No. AB012024) with a high degree of amino acid conservation in comparison with RB family proteins. PsRBR1 protein was detected as two polypeptides using an anti-PsRBR1 antibody in dormant axillary buds, whereas it was detected as three polypeptides, which were the same two polypeptides and another larger polypeptide 2 h after terminal decapitation. Both in vitro-synthesized PsPRB1 protein and lambda protein phosphatase-treated PsRBR1 protein corresponded to the smallest polypeptide detected by anti-PsRBR1 antibody, suggesting that the three polypeptides correspond to non-phosphorylated form of PsRBR1 protein, and lower- and higher-molecular mass forms of phosphorylated PsRBR1 protein. Furthermore, in vivo labeling with [32P]-inorganic phosphate indicated that PsRBR1 protein was more phosphorylated before mRNA accumulation of cell cycle regulatory genes such as PCNA. Together these findings suggest that dormancy-to-growth transition in pea axillary buds is regulated by molecular mechanisms of cell cycle control similar to those in mammals, and that the PsRBR1 protein has an important role in suppressing the cell cycle during dormancy in axillary buds

    Quality versus quantity of social ties in experimental cooperative networks

    Get PDF
    Recent studies suggest that allowing individuals to choose their partners can help to maintain cooperation in human social networks; this behaviour can supplement behavioural reciprocity, whereby humans are influenced to cooperate by peer pressure. However, it is unknown how the rate of forming and breaking social ties affects our capacity to cooperate. Here we use a series of online experiments involving 1,529 unique participants embedded in 90 experimental networks, to show that there is a ‘Goldilocks’ effect of network dynamism on cooperation. When the rate of change in social ties is too low, subjects choose to have many ties, even if they attach to defectors. When the rate is too high, cooperators cannot detach from defectors as much as defectors re-attach and, hence, subjects resort to behavioural reciprocity and switch their behaviour to defection. Optimal levels of cooperation are achieved at intermediate levels of change in social ties

    Neue linguistische Methoden und arbeitstechnische Verfahren in der Erschliessung der Àgyptischen Grammatik

    Get PDF
    15 pĂĄginas, 1 tabla, 6 figuras.Does diversity beget diversity? Diversity includes a diversity of concepts because it is linked to variability in and of life and can be applied to multiple levels. The connections between multiple levels of diversity are poorly understood. Here, we investigated the relationships between genetic, bacterial, and chemical diversity of the endangered Atlanto-Mediterranean sponge Spongia lamella. These levels of diversity are intrinsically related to sponge evolution and could have strong conservation implications. We used microsatellite markers, denaturing gel gradient electrophoresis and quantitative polymerase chain reaction, and high performance liquid chromatography to quantify genetic, bacterial, and chemical diversity of nine sponge populations. We then used correlations to test whether these diversity levels covaried. We found that sponge populations differed signiïŹcantly in genetic, bacterial, and chemical diversity. We also found a strong geographic pattern of increasing genetic, bacterial, and chemical dissimilarity with increasing geographic distance between populations. However, we failed to detect signiïŹcant correlations between the three levels of diversity investigated in our study. Our results suggest that diversity fails to beget diversity within a single species and indicates that a diversity of factors regulates a diversity of diversities, which highlights the complex nature of the mechanisms behind diversityResearch funded by grants from the Agence Nationale de la Recherche (ECIMAR), from the Spanish Ministry of Science and Technology SOLID (CTM2010-17755) and Benthomics (CTM2010-22218-C02-01) and the BIOCAPITAL project (MRTN-CT-2004-512301) of the European Union. This is a contribution of the Consolidated Research Group ‘‘Grupo de EcologıŽa BentoÂŽnica,’’ SGR2009-655.Peer reviewe
    • 

    corecore