37 research outputs found

    QTL linkage analysis of connected populations using ancestral marker and pedigree information

    Get PDF
    The common assumption in quantitative trait locus (QTL) linkage mapping studies that parents of multiple connected populations are unrelated is unrealistic for many plant breeding programs. We remove this assumption and propose a Bayesian approach that clusters the alleles of the parents of the current mapping populations from locus-specific identity by descent (IBD) matrices that capture ancestral marker and pedigree information. Moreover, we demonstrate how the parental IBD data can be incorporated into a QTL linkage analysis framework by using two approaches: a Threshold IBD model (TIBD) and a Latent Ancestral Allele Model (LAAM). The TIBD and LAAM models are empirically tested via numerical simulation based on the structure of a commercial maize breeding program. The simulations included a pilot dataset with closely linked QTL on a single linkage group and 100 replicated datasets with five linkage groups harboring four unlinked QTL. The simulation results show that including parental IBD data (similarly for TIBD and LAAM) significantly improves the power and particularly accuracy of QTL mapping, e.g., position, effect size and individuals’ genotype probability without significantly increasing computational demand

    Use of linear mixed models for genetic evaluation of gestation length and birth weight allowing for heavy-tailed residual effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The distribution of residual effects in linear mixed models in animal breeding applications is typically assumed normal, which makes inferences vulnerable to outlier observations. In order to mute the impact of outliers, one option is to fit models with residuals having a heavy-tailed distribution. Here, a Student's-<it>t </it>model was considered for the distribution of the residuals with the degrees of freedom treated as unknown. Bayesian inference was used to investigate a bivariate Student's-<it>t </it>(BS<it>t</it>) model using Markov chain Monte Carlo methods in a simulation study and analysing field data for gestation length and birth weight permitted to study the practical implications of fitting heavy-tailed distributions for residuals in linear mixed models.</p> <p>Methods</p> <p>In the simulation study, bivariate residuals were generated using Student's-<it>t </it>distribution with 4 or 12 degrees of freedom, or a normal distribution. Sire models with bivariate Student's-<it>t </it>or normal residuals were fitted to each simulated dataset using a hierarchical Bayesian approach. For the field data, consisting of gestation length and birth weight records on 7,883 Italian Piemontese cattle, a sire-maternal grandsire model including fixed effects of sex-age of dam and uncorrelated random herd-year-season effects were fitted using a hierarchical Bayesian approach. Residuals were defined to follow bivariate normal or Student's-<it>t </it>distributions with unknown degrees of freedom.</p> <p>Results</p> <p>Posterior mean estimates of degrees of freedom parameters seemed to be accurate and unbiased in the simulation study. Estimates of sire and herd variances were similar, if not identical, across fitted models. In the field data, there was strong support based on predictive log-likelihood values for the Student's-<it>t </it>error model. Most of the posterior density for degrees of freedom was below 4. Posterior means of direct and maternal heritabilities for birth weight were smaller in the Student's-<it>t </it>model than those in the normal model. Re-rankings of sires were observed between heavy-tailed and normal models.</p> <p>Conclusions</p> <p>Reliable estimates of degrees of freedom were obtained in all simulated heavy-tailed and normal datasets. The predictive log-likelihood was able to distinguish the correct model among the models fitted to heavy-tailed datasets. There was no disadvantage of fitting a heavy-tailed model when the true model was normal. Predictive log-likelihood values indicated that heavy-tailed models with low degrees of freedom values fitted gestation length and birth weight data better than a model with normally distributed residuals.</p> <p>Heavy-tailed and normal models resulted in different estimates of direct and maternal heritabilities, and different sire rankings. Heavy-tailed models may be more appropriate for reliable estimation of genetic parameters from field data.</p

    QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.)

    Get PDF
    A quantitative trait locus (QTL) analysis designed for a multi-parent population was carried out and tested in oil palm (Elaeis guineensis Jacq.), which is a diploid cross-fertilising perennial species. A new extension of the MCQTL package was especially designed for crosses between heterozygous parents. The algorithm, which is now available for any allogamous species, was used to perform and compare two types of QTL search for small size families, within-family analysis and across-family analysis, using data from a 2 × 2 complete factorial mating experiment involving four parents from three selected gene pools. A consensus genetic map of the factorial design was produced using 251 microsatellite loci, the locus of the Sh major gene controlling fruit shell presence, and an AFLP marker of that gene. A set of 76 QTLs involved in 24 quantitative phenotypic traits was identified. A comparison of the QTL detection results showed that the across-family analysis proved to be efficient due to the interconnected families, but the family size issue is just partially solved. The identification of QTL markers for small progeny numbers and for marker-assisted selection strategies is discussed

    Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry

    No full text
    Large fruit size is a critical trait for any new sweet cherry (Prunus avium L.) cultivar, as it is directly related to grower profitability. Therefore, determining the genetic control of fruit size in relevant breeding germplasm is a high priority. The objectives of this study were (1) to determine the number and positions of quantitative trait loci (QTL) for sweet cherry fruit size utilizing data simultaneously from multiple families and their pedigreed ancestors, and (2) to estimate fruit size QTL genotype probabilities and genomic breeding values for the plant materials. The sweet cherry material used was a five-generation pedigree consisting of 23 founders and parents and 424 progeny individuals from four full-sib families, which were phenotyped for fruit size and genotyped with 78 RosCOS single nucleotide polymorphism and 86 simple sequence repeat markers. These data were analyzed by a Bayesian approach implemented in FlexQTL™ software. Six QTL were identified: three on linkage group (G) 2 with one each on groups 1, 3, and 6. Of these QTL, the second G2 QTL and the G6 QTL were previously discovered while other QTL were novel. The predicted QTL genotypes show that some QTL were segregating in all families while other QTL were segregating in a subset of the families. The progeny varied for breeding value, with some progeny having higher breeding values than their parents. The results illustrate the use of multiple pedigree-linked families for integrated QTL mapping in an outbred crop to discover novel QTL and predict QTL genotypes and breeding values

    Integrated QTL detection for key breeding traits in multiple peach progenies

    Get PDF
    Abstract Background Peach (Prunus persica (L.) Batsch) is a major temperate fruit crop with an intense breeding activity. Breeding is facilitated by knowledge of the inheritance of the key traits that are often of a quantitative nature. QTLs have traditionally been studied using the phenotype of a single progeny (usually a full-sib progeny) and the correlation with a set of markers covering its genome. This approach has allowed the identification of various genes and QTLs but is limited by the small numbers of individuals used and by the narrow transect of the variability analyzed. In this article we propose the use of a multi-progeny mapping strategy that used pedigree information and Bayesian approaches that supports a more precise and complete survey of the available genetic variability. Results Seven key agronomic characters (data from 1 to 3 years) were analyzed in 18 progenies from crosses between occidental commercial genotypes and various exotic lines including accessions of other Prunus species. A total of 1467 plants from these progenies were genotyped with a 9 k SNP array. Forty-seven QTLs were identified, 22 coinciding with major genes and QTLs that have been consistently found in the same populations when studied individually and 25 were new. A substantial part of the QTLs observed (47%) would not have been detected in crosses between only commercial materials, showing the high value of exotic lines as a source of novel alleles for the commercial gene pool. Our strategy also provided estimations on the narrow sense heritability of each character, and the estimation of the QTL genotypes of each parent for the different QTLs and their breeding value. Conclusions The integrated strategy used provides a broader and more accurate picture of the variability available for peach breeding with the identification of many new QTLs, information on the sources of the alleles of interest and the breeding values of the potential donors of such valuable alleles. These results are first-hand information for breeders and a step forward towards the implementation of DNA-informed strategies to facilitate selection of new cultivars with improved productivity and quality
    corecore