906 research outputs found
Further development of an in vitro model for studying the penetration of chemicals through compromised skin
A new in vitro model based on the electrical resistance properties of the skin barrier has been established in this laboratory. The model utilises a tape stripping procedure in dermatomed pig skin that removes a specific proportion of the stratum corneum, mimicking impaired barrier function observed in humans with damaged skin. The skin penetration and distribution of chemicals with differing physicochemical properties, namely; Benzoic acid, 3-Aminophenol, Caffeine and Sucrose has been assessed in this model. Although, skin penetration over 24 h differed for each chemical, compromising the skin did not alter the shape of the time course profile, although absorption into receptor fluid was higher for each chemical. Systemic exposure (receptor fluid, epidermis and dermis), was marginally higher in compromised skin following exposure to the fast penetrant, Benzoic acid, and the slow penetrant Sucrose. The systemically available dose of 3-Aminophenol increased to a greater extent and the absorption of Caffeine was more than double in compromised skin, suggesting that Molecular Weight and Log Pow, are not the only determinants for assessing systemic exposure under these conditions. Although further investigations are required, this in vitro model may be useful for prediction of dermal route exposure under conditions where skin barrier is impaired
Recommended from our members
The influence of tree species on canopy soil nutrient status in a tropical lowland wet forest in Costa Rica
The canopy is host to a large percentage of the flora and fauna in tropical wet forests and is distinct from the forest floor in plant richness, soil type and microclimate. In this study, we examined the influence of tree species and season on soil nutrient cycling processes in canopy soils of four tree species common to Costa Rican wet forests. We also compared the canopy soils to the associated forest floor mineral soils. Both tree species and season had strong effects on canopy soil nutrients and processes. Canopy soils from trees with high litter lignin concentrations had higher net N-mineralization rates and higher dissolved inorganic N concentrations than those with low lignin concentrations. During the dry season, net N-immobilization occurred and dissolved organic and inorganic N and available P concentrations were significantly higher than during the wet season. Overall, canopy soils had higher N levels and higher fungi + bacteria richness than forest floor mineral soils. The differences in canopy soil properties observed among tree species indicates that these species have distinct N cycles that reflect differences in both soil origin and biological controls. © 2008 Springer Science+Business Media B.V
Staphylococcus epidermidis glucose uptake in biofilm versus planktonic cells
The aim of this work was to compare the glucose
uptake of biofilms formed by four different Staphylococcus
epidermidis strains as well as to compare between
sessile and planktonic cells of the same strain. Biofilm cells
showed a lower level of glucose uptake compared to
planktonic cells. Moreover, glucose uptake by cells in the
sessile form was strongly influenced by biofilm composition.
Therefore, this work helps to confirm the phenotypic
variability of S. epidermidis strains and the different
behaviour patterns between sessile and free cells.Fundação para a Ciência e a Tecnologia (FCT) - POCTI/ESP/42688/2001;
SFRH/BD/19265/2004
The Dawn of Open Access to Phylogenetic Data
The scientific enterprise depends critically on the preservation of and open
access to published data. This basic tenet applies acutely to phylogenies
(estimates of evolutionary relationships among species). Increasingly,
phylogenies are estimated from increasingly large, genome-scale datasets using
increasingly complex statistical methods that require increasing levels of
expertise and computational investment. Moreover, the resulting phylogenetic
data provide an explicit historical perspective that critically informs
research in a vast and growing number of scientific disciplines. One such use
is the study of changes in rates of lineage diversification (speciation -
extinction) through time. As part of a meta-analysis in this area, we sought to
collect phylogenetic data (comprising nucleotide sequence alignment and tree
files) from 217 studies published in 46 journals over a 13-year period. We
document our attempts to procure those data (from online archives and by direct
request to corresponding authors), and report results of analyses (using
Bayesian logistic regression) to assess the impact of various factors on the
success of our efforts. Overall, complete phylogenetic data for ~60% of these
studies are effectively lost to science. Our study indicates that phylogenetic
data are more likely to be deposited in online archives and/or shared upon
request when: (1) the publishing journal has a strong data-sharing policy; (2)
the publishing journal has a higher impact factor, and; (3) the data are
requested from faculty rather than students. Although the situation appears
dire, our analyses suggest that it is far from hopeless: recent initiatives by
the scientific community -- including policy changes by journals and funding
agencies -- are improving the state of affairs
Two-dimensional models as testing ground for principles and concepts of local quantum physics
In the past two-dimensional models of QFT have served as theoretical
laboratories for testing new concepts under mathematically controllable
condition. In more recent times low-dimensional models (e.g. chiral models,
factorizing models) often have been treated by special recipes in a way which
sometimes led to a loss of unity of QFT. In the present work I try to
counteract this apartheid tendency by reviewing past results within the setting
of the general principles of QFT. To this I add two new ideas: (1) a modular
interpretation of the chiral model Diff(S)-covariance with a close connection
to the recently formulated local covariance principle for QFT in curved
spacetime and (2) a derivation of the chiral model temperature duality from a
suitable operator formulation of the angular Wick rotation (in analogy to the
Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational
chiral theories. The SL(2,Z) modular Verlinde relation is a special case of
this thermal duality and (within the family of rational models) the matrix S
appearing in the thermal duality relation becomes identified with the
statistics character matrix S. The relevant angular Euclideanization'' is done
in the setting of the Tomita-Takesaki modular formalism of operator algebras.
I find it appropriate to dedicate this work to the memory of J. A. Swieca
with whom I shared the interest in two-dimensional models as a testing ground
for QFT for more than one decade.
This is a significantly extended version of an ``Encyclopedia of Mathematical
Physics'' contribution hep-th/0502125.Comment: 55 pages, removal of some typos in section
Invasion speeds for structured populations in fluctuating environments
We live in a time where climate models predict future increases in
environmental variability and biological invasions are becoming increasingly
frequent. A key to developing effective responses to biological invasions in
increasingly variable environments will be estimates of their rates of spatial
spread and the associated uncertainty of these estimates. Using stochastic,
stage-structured, integro-difference equation models, we show analytically that
invasion speeds are asymptotically normally distributed with a variance that
decreases in time. We apply our methods to a simple juvenile-adult model with
stochastic variation in reproduction and an illustrative example with published
data for the perennial herb, \emph{Calathea ovandensis}. These examples
buttressed by additional analysis reveal that increased variability in vital
rates simultaneously slow down invasions yet generate greater uncertainty about
rates of spatial spread. Moreover, while temporal autocorrelations in vital
rates inflate variability in invasion speeds, the effect of these
autocorrelations on the average invasion speed can be positive or negative
depending on life history traits and how well vital rates ``remember'' the
past
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Superconformal Flavor Simplified
A simple explanation of the flavor hierarchies can arise if matter fields
interact with a conformal sector and different generations have different
anomalous dimensions under the CFT. However, in the original study by Nelson
and Strassler many supersymmetric models of this type were considered to be
'incalculable' because the R-charges were not sufficiently constrained by the
superpotential. We point out that nearly all such models are calculable with
the use of a-maximization. Utilizing this, we construct the simplest
vector-like flavor models and discuss their viability. A significant constraint
on these models comes from requiring that the visible gauge couplings remain
perturbative throughout the conformal window needed to generate the
hierarchies. However, we find that there is a small class of simple flavor
models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications,
references adde
Is Mislocalization during saccades related to the position of the saccade target within the image or to the gaze position at the end of the saccade?
A stimulus that is flashed around the time of a saccade tends to be mislocalized in the direction of the saccade target. Our question is whether the mislocalization is related to the position of the saccade target within the image or to the gaze position at the end of the saccade. We separated the two with a visual illusion that influences the perceived distance to the target of the saccade and thus saccade endpoint without affecting the perceived position of the saccade target within the image. We asked participants to make horizontal saccades from the left to the right end of the shaft of a Müller-Lyer figure. Around the time of the saccade, we flashed a bar at one of five possible positions and asked participants to indicate its location by touching the screen. As expected, participants made shorter saccades along the fins-in (<->) configuration than along the fins-out (>-<) configuration of the figure. The illusion also influenced the mislocalization pattern during saccades, with flashes presented with the fins-out configuration being perceived beyond flashes presented with the fins-in configuration. The difference between the patterns of mislocalization for bars flashed during the saccade for the two configurations corresponded quantitatively with a prediction based on compression towards the saccade endpoint considering the magnitude of the effect of the illusion on saccade amplitude. We conclude that mislocalization is related to the eye position at the end of the saccade, rather than to the position of the saccade target within the image
Contrasting effects of long term versus short-term nitrogen addition on photosynthesis and respiration in the Arctic
We examined the effects of short (<1–4 years) and long-term (22 years) nitrogen (N) and/or phosphorus (P) addition on the foliar CO2 exchange parameters of the Arctic species Betula nana and Eriophorum vaginatum in northern Alaska. Measured variables included: the carboxylation efficiency of Rubisco (Vcmax), electron transport capacity (Jmax), dark respiration (Rd), chlorophyll a and b content (Chl), and total foliar N (N). For both B. nana and E. vaginatum, foliar N increased by 20–50 % as a consequence of 1–22 years of fertilisation, respectively, and for B. nana foliar N increase was consistent throughout the whole canopy. However, despite this large increase in foliar N, no significant changes in Vcmax and Jmax were observed. In contrast, Rd was significantly higher (>25 %) in both species after 22 years of N addition, but not in the shorter-term treatments. Surprisingly, Chl only increased in both species the first year of fertilisation (i.e. the first season of nutrients applied), but not in the longer-term treatments. These results imply that: (1) under current (low) N availability, these Arctic species either already optimize their photosynthetic capacity per leaf area, or are limited by other nutrients; (2) observed increases in Arctic NEE and GPP with increased nutrient availability are caused by structural changes like increased leaf area index, rather than increased foliar photosynthetic capacity and (3) short-term effects (1–4 years) of nutrient addition cannot always be extrapolated to a larger time scale, which emphasizes the importance of long-term ecological experiments
- …
