91 research outputs found

    Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease.

    Get PDF
    BACKGROUND AND AIMS: The scope of this working group was to review (1) ecological interactions at the dental biofilm in health and disease, (2) the role of microbial communities in the pathogenesis of periodontitis and caries, and (3) the innate host response in caries and periodontal diseases. RESULTS AND CONCLUSIONS: A health-associated biofilm includes genera such as Neisseria, Streptococcus, Actinomyces, Veillonella and Granulicatella. Microorganisms associated with both caries and periodontal diseases are metabolically highly specialized and organized as multispecies microbial biofilms. Progression of these diseases involves multiple microbial interactions driven by different stressors. In caries, the exposure of dental biofilms to dietary sugars and their fermentation to organic acids results in increasing proportions of acidogenic and aciduric species. In gingivitis, plaque accumulation at the gingival margin leads to inflammation and increasing proportions of proteolytic and often obligately anaerobic species. The natural mucosal barriers and saliva are the main innate defence mechanisms against soft tissue bacterial invasion. Similarly, enamel and dentin are important hard tissue barriers to the caries process. Given that the present state of knowledge suggests that the aetiologies of caries and periodontal diseases are mutually independent, the elements of innate immunity that appear to contribute to resistance to both are somewhat coincidental

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    Predicting sulfotyrosine sites using the random forest algorithm with significantly improved prediction accuracy

    Get PDF
    addresses: School of Biosciences, University of Exeter, Exeter EX4 5DE, UK. [email protected]: PMCID: PMC2777180types: Journal Article; Research Support, Non-U.S. Gov't© 2009 Yang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Tyrosine sulfation is one of the most important posttranslational modifications. Due to its relevance to various disease developments, tyrosine sulfation has become the target for drug design. In order to facilitate efficient drug design, accurate prediction of sulfotyrosine sites is desirable. A predictor published seven years ago has been very successful with claimed prediction accuracy of 98%. However, it has a particularly low sensitivity when predicting sulfotyrosine sites in some newly sequenced proteins

    Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects

    Get PDF
    The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability

    Effect of trace metal availability on coccolithophorid calcification

    Get PDF
    The deposition of atmospheric dust into the ocean has varied considerably over geological time. Because some of the trace metals contained in dust are essential plant nutrients which can limit phytoplankton growth in parts of the ocean, it has been suggested that variations in dust supply to the surface ocean might influence primary production. Whereas the role of trace metal availability in photosynthetic carbon fixation has received considerable attention, its effect on biogenic calcification is virtually unknown. The production of both particulate organic carbon and calcium carbonate (CaCO3) drives the ocean\u27s biological carbon pump. The ratio of particulate organic carbon to CaCO3 export, the so-called rain ratio, is one of the factors determining CO2 sequestration in the deep ocean. Here we investigate the influence of the essential trace metals iron and zinc on the prominent CaCO3-producing microalga Emiliania huxleyi. We show that whereas at low iron concentrations growth and calcification are equally reduced, low zinc concentrations result in a de-coupling of the two processes. Despite the reduced growth rate of zinc-limited cells, CaCO3 production rates per cell remain unaffected, thus leading to highly calcified cells. These results suggest that changes in dust deposition can affect biogenic calcification in oceanic regions characterized by trace metal limitation, with possible consequences for CO2 partitioning between the atmosphere and the ocean

    Stillbirth in Australia 2: Working together to reduce stillbirth in Australia: The Safer Baby Bundle initiative

    Full text link
    © 2020 Australian College of Midwives The rate of late gestation stillbirth in Australia is unacceptably high. Up to one third of stillbirths are preventable, particularly beyond 28 weeks’ gestation. The aim of this second paper in the Stillbirth in Australia series is to highlight one key national initiative, the Safer Baby Bundle (SBB), which has been led by the Centre of Research Excellence in Stillbirth in partnership with state health departments. Addressing commonly identified evidence practice gaps, the SBB contains five elements that, when implemented together, should result in better outcomes than if performed individually. This paper describes the development of the SBB, what the initiative aims to achieve, and progress to date. By collaborating with Departments of Health and other partners to amplify uptake of the SBB, we anticipate a reduction of at least 20% in Australia's stillbirth rate after 28 weeks’ gestation is achievable
    • …
    corecore