753 research outputs found

    Dominant Role of Nucleotide Substitution in the Diversification of Serotype 3 Pneumococci over Decades and during a Single Infection

    Get PDF
    Streptococcus pneumoniae of serotype 3 possess a mucoid capsule and cause disease associated with high mortality rates relative to other pneumococci. Phylogenetic analysis of a complete reference genome and 81 draft sequences from clonal complex 180, the predominant serotype 3 clone in much of the world, found most sampled isolates belonged to a clade affected by few diversifying recombinations. However, other isolates indicate significant genetic variation has accumulated over the clonal complex’s entire history. Two closely related genomes, one from the blood and another from the cerebrospinal fluid, were obtained from a patient with meningitis. The pair differed in their behaviour in a mouse model of disease and in their susceptibility to antimicrobials, with at least some of these changes attributable to a mutation that upregulated the patAB efflux pump. This indicates clinically important phenotypic variation can accumulate rapidly through small alterations to the genotype

    Investigating the potential of novel non-woven fabrics for efficient pollination control in plant breeding

    Get PDF
    Internal temperature (a) and vapour pressure deficit (hPa, b) response rates to a transition from dark to light (0 to 880 umolm-2s-1) above the pollination control bags. Box plots of the average maximum temperature (c) and VPD (d) are shown for each bag type. Significant differences are denoted by different lower case letters for temperature and VPD and are based on 11 replicates.</p

    Aspects of coverage in medical DNA sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA sequencing is now emerging as an important component in biomedical studies of diseases like cancer. Short-read, highly parallel sequencing instruments are expected to be used heavily for such projects, but many design specifications have yet to be conclusively established. Perhaps the most fundamental of these is the redundancy required to detect sequence variations, which bears directly upon genomic coverage and the consequent resolving power for discerning somatic mutations.</p> <p>Results</p> <p>We address the medical sequencing coverage problem via an extension of the standard mathematical theory of haploid coverage. The expected diploid multi-fold coverage, as well as its generalization for aneuploidy are derived and these expressions can be readily evaluated for any project. The resulting theory is used as a scaling law to calibrate performance to that of standard BAC sequencing at 8× to 10× redundancy, i.e. for expected coverages that exceed 99% of the unique sequence. A differential strategy is formalized for tumor/normal studies wherein tumor samples are sequenced more deeply than normal ones. In particular, both tumor alleles should be detected at least twice, while both normal alleles are detected at least once. Our theory predicts these requirements can be met for tumor and normal redundancies of approximately 26× and 21×, respectively. We explain why these values do not differ by a factor of 2, as might intuitively be expected. Future technology developments should prompt even deeper sequencing of tumors, but the 21× value for normal samples is essentially a constant.</p> <p>Conclusion</p> <p>Given the assumptions of standard coverage theory, our model gives pragmatic estimates for required redundancy. The differential strategy should be an efficient means of identifying potential somatic mutations for further study.</p

    Sodium bicarbonate ingestion and individual variability in time to peak pH

    Get PDF
    The aim of this study was to determine the individual variability in time to peak pH after the consumption of a 300mg.kg-1 dose of sodium bicarbonate (NaHCO3). Seventeen active males volunteered to participate in the study (mean ± SD: age 21.38 ± 1.5y; mass 75.8 ± 5.8kg; height 176.8 ± 7.6cm). Participants reported to the laboratory where a resting capillary blood sample was taken aseptically from the fingertip. After this, 300 mg.kg-1 of NaHCO3 in 400ml of water with 50ml of flavoured cordial was ingested. Participants then rested for 90 min during which repeated blood samples were procured at 10 minute intervals for 60 mins and then every 5 min until 90 min. Blood pH concentrations were measured using a blood gas analyser. Results suggested that time to peak pH (64.41±18.78 min) was highly variable with a range of 10-85 min and a coefficient of variation of 29.16%. A bi-modal distribution occurred, at 65 and 75 min. In conclusion, researchers and athletes, when using NaHCO3 as an ergogenic aid, should determine, in advance their time to peak pH to best utilise the added buffering capacity this substance allows

    An experimental study of combining evolutionary algorithms with KD-tree to solving dynamic optimisation problems

    Get PDF
    This paper studies the idea of separating the explored and unexplored regions in the search space to improve change detection and optima tracking. When an optimum is found, a simple sampling technique is used to estimate the basin of attraction of that optimum. This estimated basin is marked as an area already explored. Using a special tree-based data structure named KD-Tree to divide the search space, all explored areas can be separated from unexplored areas. Given such a division, the algorithm can focus more on searching for unexplored areas, spending only minimal resource on monitoring explored areas to detect changes in explored regions. The experiments show that the proposed algorithm has competitive performance, especially when change detection is taken into account in the optimisation process. The new algorithm was proved to have less computational complexity in term of identifying the appropriate sub-population/region for each individual. We also carry out investigations to find out why the algorithm performs well. These investigations reveal a positive impact of using the KD-Tree

    Functional assays to determine the significance of two common XPC 3'UTR variants found in bladder cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>XPC </it>is involved in the nucleotide excision repair of DNA damaged by carcinogens known to cause bladder cancer. Individuals homozygous for the variant allele of <it>XPC </it>c.1496C > T (p.Ala499Val) were shown in a large pooled analysis to have an increased bladder cancer risk, and we found two 3'UTR variants, *611T > A and c.*618A > G, to be in strong linkage disequilibrium with c.1496T. Here we determined if these two 3'UTR variants can affect mRNA stability and assessed the impact of all three variants on mRNA and protein expression.</p> <p>Methods</p> <p><it>In vitro </it>mRNA stability assays were performed and mRNA and protein expression measured both in plasmid-based assays and in lymphocytes and lymphoblastoid cell lines from bladder and breast cancer patients.</p> <p>Results</p> <p>The two 3'UTR variants were associated with reduced protein and mRNA expression in plasmid-based assays, suggesting an effect on mRNA stability and/or transcription/translation. A near-significant reduction in XPC protein expression (p = 0.058) was detected in lymphoblastoid cell lines homozygous for these alleles but no differences in mRNA stability in these lines was found or in mRNA or protein levels in lymphocytes heterozygous for these alleles.</p> <p>Conclusion</p> <p>The two 3'UTR variants may be the variants underlying the association of c.1496C > T and bladder cancer risk acting via a mechanism modulating protein expression.</p

    Glargine and degludec: solution behaviour of higher dose synthetic insulins

    Get PDF
    Single, double and triple doses of the synthetic insulins glargine and degludec currently used in patient therapy are characterised using macromolecular hydrodynamic techniques (dynamic light scattering and analytical ultracentrifugation) in an attempt to provide the basis for improved personalised insulin profiling in patients with diabetes. Using dynamic light scattering and sedimentation velocity in the analytical ultracentrifuge glargine was shown to be primarily dimeric under solvent conditions used in current formulations whereas degludec behaved as a dihexamer with evidence of further association of the hexamers (“multi-hexamerisation”). Further analysis by sedimentation equilibrium showed that degludec exhibited reversible interaction between mono- and-di-hexamer forms. Unlike glargine, degludec showed strong thermodynamic non-ideality, but this was suppressed by the addition of salt. With such large injectable doses of synthetic insulins remaining in the physiological system for extended periods of time, in some case 24–40 hours, double and triple dose insulins may impact adversely on personalised insulin profiling in patients with diabetes

    Accuracy in Copy Number Calling by qPCR and PRT: A Matter of DNA

    Get PDF
    The possible implication of copy number variation (CNV) in the genetic susceptibility to human disease needs to be assessed using robust methods that can be applied at a population scale. In this report, we analyze the performance of the two major techniques, quantitative PCR (qPCR) and paralog ratio test (PRT), and investigate the influence of input DNA amount and template integrity on the reliability of both methods. Analysis of three genes (PRELID1, SYNPO and DEFB4) in a large sample set showed that both methods are prone to false copy number assignments if sufficient attention is not paid to DNA concentration and quality. Accurate normalization of samples is essential for reproducible qPCR because it avoids the effect of differential amplification efficiencies between target and control assays, whereas PRT is generally more sensitive to template degradation due to the fact that longer amplicons are usually needed to optimize sensitivity and specificity of paralog sequence PCR. The use of normalized, high quality genomic DNA yields comparable results with both methods

    A comparison of nicotine dose estimates in smokers between filter analysis, salivary cotinine, and urinary excretion of nicotine metabolites

    Get PDF
    RATIONALE: Nicotine uptake during smoking was estimated by either analyzing the metabolites of nicotine in various body fluids or by analyzing filters from smoked cigarettes. However, no comparison of the filter analysis method with body fluid analysis methods has been published. OBJECTIVES: Correlate nicotine uptake estimates between filter analysis, salivary cotinine, and urinary excretion of selected nicotine metabolites to determine the suitability of these methods in estimating nicotine absorption in smokers of filtered cigarettes. MATERIALS AND METHODS: A 5-day clinical study was conducted with 74 smokers who smoked 1–19 mg Federal Trade Commission tar cigarettes, using their own brands ad libitum. Filters were analyzed to estimate the daily mouth exposure of nicotine. Twenty-four-hour urine samples were collected and analyzed for nicotine, cotinine, and 3′-hydroxycotinine plus their glucuronide conjugates. Saliva samples were collected daily for cotinine analysis. RESULTS: Each method correlated significantly (p < 0.01) with the other two. The best correlation was between the mouth exposure of nicotine, as estimated by filter analysis, and urinary nicotine plus metabolites. Multiple regression analysis implies that saliva cotinine and urinary output are dependent on nicotine mouth exposure for multiple days. Creatinine normalization of the urinary metabolites degrades the correlation with mouth exposure. CONCLUSIONS: The filter analysis method was shown to correlate with more traditional methods of estimating nicotine uptake. However, because filter analysis is less complicated and intrusive, subjects can collect samples easily and unsupervised. This should enable improvements in study compliance and future study designs
    corecore