1,427 research outputs found

    Radiofrequency Heating of the Cornea: An Engineering Review of Electrodes and Applicators

    Get PDF
    This paper reviews the different applicators and electrodes employed to create localized heating in the cornea by means of the application of radiofrequency (RF) currents. Thermokeratoplasty (TKP) is probably the best known of these techniques and is based on the principle that heating corneal tissue (particularly the central part of the corneal tissue, i.e. the central stroma) causes collagen to shrink, and hence changes the corneal curvature. Firstly, we point out that TKP techniques are a complex challenge from the engineering point of view, due to the fact that it is necessary to create very localized heating in a precise location (central stroma), within a narrow temperature range (from 58 to 76ºC). Secondly, we describe the different applicator designs (i.e. RF electrodes) proposed and tested to date. This review is planned from a technical point of view, i.e. the technical developments are classified and described taking into consideration technical criteria, such as energy delivery mode (monopolar versus bipolar), thermal conditions (dry versus cooled electrodes), lesion pattern (focal versus circular lesions), and application placement (surface versus intrastromal)

    The crossroads of evidence-based medicine and health policy: implications for urology

    Get PDF
    As healthcare spending in the United States continues to rise at an unsustainable rate, recent policy decisions introduced at the national level will rely on precepts of evidence-based medicine to promote the determination, dissemination, and delivery of “best practices” or quality care while simultaneously reducing cost. We discuss the influence of evidence-based medicine on policy and, in turn, the impact of policy on the developing clinical evidence base with an eye to the potential effects of these relationships on the practice and provision of urologic care

    Do red deer stags (Cervus elaphus) use roar fundamental frequency (F0) to assess rivals?

    Get PDF
    It is well established that in humans, male voices are disproportionately lower pitched than female voices, and recent studies suggest that this dimorphism in fundamental frequency (F0) results from both intrasexual (male competition) and intersexual (female mate choice) selection for lower pitched voices in men. However, comparative investigations indicate that sexual dimorphism in F0 is not universal in terrestrial mammals. In the highly polygynous and sexually dimorphic Scottish red deer Cervus elaphus scoticus, more successful males give sexually-selected calls (roars) with higher minimum F0s, suggesting that high, rather than low F0s advertise quality in this subspecies. While playback experiments demonstrated that oestrous females prefer higher pitched roars, the potential role of roar F0 in male competition remains untested. Here we examined the response of rutting red deer stags to playbacks of re-synthesized male roars with different median F0s. Our results show that stags’ responses (latencies and durations of attention, vocal and approach responses) were not affected by the F0 of the roar. This suggests that intrasexual selection is unlikely to strongly influence the evolution of roar F0 in Scottish red deer stags, and illustrates how the F0 of terrestrial mammal vocal sexual signals may be subject to different selection pressures across species. Further investigations on species characterized by different F0 profiles are needed to provide a comparative background for evolutionary interpretations of sex differences in mammalian vocalizations

    Effects on musculoskeletal pain, work ability and sickness absence in a 1-year randomised controlled trial among cleaners

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Only a few workplace initiatives among cleaners have been reported, even though they constitute a job group in great need of health promotion. The purpose of this trial was to evaluate the effect of either physical coordination training or cognitive behavioural training on musculoskeletal pain, work ability and sickness absence among cleaners.</p> <p>Methods</p> <p>A cluster-randomised controlled trial was conducted among 294 female cleaners allocated to either physical coordination training (PCT), cognitive behavioural training (CBTr) or a reference group (REF). Questionnaires about musculoskeletal pain and work ability were completed at baseline and after one year's intervention. Sickness absence data were obtained from the managers' records. Analyses were performed according to the intention-to-treat-principle (ITT).</p> <p>Results</p> <p>No overall reduction in musculoskeletal pain, work ability or sickness absence from either PCT or CBTr compared with REF was found in conservative ITT analyses. However, explorative analyses revealed a treatment effect for musculoskeletal pain of the PCT. People with chronic neck/shoulder pain at baseline were more frequently non-chronic at follow-up after PCT compared with REF (p = 0.05).</p> <p>Conclusions</p> <p>The PCT intervention appeared effective for reducing chronic neck/shoulder pain among the female cleaners. It is recommended that future interventions among similar high-risk job groups focus on the implementation aspects of the interventions to maximise outcomes more distal from the intervention such as work ability and sickness absence.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN96241850">ISRCTN96241850</a></p

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    Symmetry structure in discrete models of biochemical systems : natural subsystems and the weak control hierarchy in a new model of computation driven by interactions

    Get PDF
    © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.Interaction Computing (IC) is inspired by the observation that cell metabolic/regulatory systems construct order dynamically, through constrained interactions between their components and based on a wide range of possible inputs and environmental conditions. The goals of this work are (1) to identify and understand mathematically the natural subsystems and hierarchical relations in natural systems enabling this, and (2) to use the resulting insights to define a new model of computation based on interactions that is useful for both biology and computation. The dynamical characteristics of the cellular pathways studied in Systems Biology relate, mathematically, to the computational characteristics of automata derived from them, and their internal symmetry structures to computational power. Finite discrete automata models of biological systems such as the lac operon, Krebs cycle, and p53-mdm2 genetic regulation constructed from Systems Biology models have canonically associated algebraic structures { transformation semigroups. These contain permutation groups (local substructures exhibiting symmetry) that correspond to "pools of reversibility". These natural subsystems are related to one another in a hierarchical manner by the notion of "weak control ". We present natural subsystems arising from several biological examples and their weak control hierarchies in detail. Finite simple non-abelian groups (SNAGs) are found in biological examples and can be harnessed to realize nitary universal computation. This allows ensembles of cells to achieve any desired finitary computational transformation, depending on external inputs, via suitably constrained interactions. Based on this, interaction machines that grow and change their structure recursively are introduced and applied, providing a natural model of computation driven by interactions.Peer reviewe

    Photodynamic therapy for multi-resistant cutaneous Langerhans cell histiocytosis

    Get PDF
    Langerhans cell histiocytosis is a rare group of proliferative disorders. Beside cutaneous involvement, other internal organs can be affected. The treatment of cutaneous lesions is difficult and relies on topical corticosteroids, carmustine, nitrogen mustard, and photochemotherapy. Systemic steroids and vinblastine are used for recalcitrant skin lesions. However, some cases fail to respond. An 18-month old boy presented a CD1a+, S100a+ Langerhans cell histocytosis with cutaneous and severe scalp involvement. Topical corticosteroids and nitrogen mustard failed to improve the skin lesions. Systemic corticosteroids and vinblastine improved the truncal involvement but had no effect on the scalp lesions. Methylaminolevulinate (MAL) based photodynamic therapy (PDT) resulted in a significant regression of the scalp lesions. Control histology revealed an almost complete clearance of the tumor infiltrate. Clinical follow-up after six months showed no recurrence

    Quantitative assessment of microbicide-induced injury in the ovine vaginal epithelium using confocal microendoscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of safe topical microbicides that can preserve the integrity of cervicovaginal tract epithelial barrier is of great interest as this may minimize the potential for increased susceptibility to STI infections. High resolution imaging to assess epithelial integrity in a noninvasive manner could be a valuable tool for preclinical testing of candidate topical agents.</p> <p>Methods</p> <p>A quantitative approach using confocal fluorescence microendoscopy (CFM) for assessment of microbicide-induced injury to the vaginal epithelium was developed. Sheep were treated intravaginally with one of five agents in solution (PBS; 0.02% benzalkonium chloride (BZK); 0.2% BZK) or gel formulation (hydroxyethyl cellulose (HEC); Gynol II nonoxynol-9 gel (N-9)). After 24 hours the vaginal tract was removed, labeled with propidium iodide (PI), imaged, then fixed for histology. An automated image scoring algorithm was developed for quantitative assessment of injury and applied to the data set. Image-based findings were validated with histological visual gradings that describe degree of injury and measurement of epithelial thickness.</p> <p>Results</p> <p>Distinct differences in PI staining were detected following BZK and N-9 treatment. Images from controls had uniformly distributed nuclei with defined borders, while those after BZK or N-9 showed heavily stained and disrupted nuclei, which increased in proportion to injury detected on histology. The confocal scoring system revealed statistically significant scores for each agent versus PBS controls with the exception of HEC and were consistent with histology scores of injury.</p> <p>Conclusions</p> <p>Confocal microendoscopy provides a sensitive, objective, and quantitative approach for non-invasive assessment of vaginal epithelial integrity and could serve as a tool for real-time safety evaluation of emerging intravaginal topical agents.</p

    Quantitative Description of Glycan-Receptor Binding of Influenza A Virus H7 Hemagglutinin

    Get PDF
    In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses). We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors) is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and North American (H7N2) lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.National Institutes of Health (U.S.) (GM R37 GM057073-13)Singapore-MIT Alliance for Research and Technolog
    corecore