264 research outputs found

    Nifedipine in Scleroderma Ulcerations

    Full text link
    Cutaneous ulcerations may be due to a variety of causes, including vasculitis. infections, arterial insufficiency, and microvascular damage. The net effect is diminished blood flow to the skin. Nifedipine, a calcium antagonist, has been shown to improve cutaneous blood How and to alleviate reactive vasospastic ischemia (Raynaud's phenomenon). The authors report an ischemic ulcer of scleroderma showing visible improvement with nifedipine therapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65515/1/j.1365-4362.1984.tb01233.x.pd

    Influence of advanced age of maternal grandmothers on Down syndrome

    Get PDF
    BACKGROUND: Down syndrome (DS) is the most common chromosomal anomaly associated with mental retardation. This is due to the occurrence of free trisomy 21 (92–95%), mosaic trisomy 21 (2–4%) and translocation (3–4%). Advanced maternal age is a well documented risk factor for maternal meiotic nondisjunction. In India three children with DS are born every hour and more DS children are given birth to by young age mothers than by advanced age mothers. Therefore, detailed analysis of the families with DS is needed to find out other possible causative factors for nondisjunction. METHODS: We investigated 69 families of cytogenetically confirmed DS children and constructed pedigrees of these families. We also studied 200 randomly selected families belonging to different religions as controls. Statistical analysis was carried out using logistic regression. RESULTS: Out of the 69 DS cases studied, 67 were free trisomy 21, two cases were mosaic trisomy 21 and there were none with translocation. The number of DS births was greater for the young age mothers compared with the advanced age mothers. It has also been recorded that young age mothers (18 to 29 years) born to their mothers at the age 30 years and above produced as high as 91.3% of children with DS. The logistic regression of case- control study of DS children revealed that the odds ratio of age of grandmother was significant when all the four variables were used once at a time. However, the effect of age of mother and father was smaller than the effect of age of maternal grandmother. Therefore, for every year of advancement of age of the maternal grandmother, the risk (odds) of birth of DS baby increases by 30%. CONCLUSION: Besides the known risk factors, mother's age, father's age, the age of the maternal grandmother at the time of birth of the mother is a risk factor for the occurrence of Down syndrome

    Partial Regulatory T Cell Depletion Prior to Acute Feline Immunodeficiency Virus Infection Does Not Alter Disease Pathogenesis

    Get PDF
    Feline immunodeficiency virus (FIV) infection in cats follows a disease course similar to HIV-1, including a short acute phase characterized by high viremia, and a prolonged asymptomatic phase characterized by low viremia and generalized immune dysfunction. CD4+CD25hiFoxP3+ immunosuppressive regulatory T (Treg) cells have been implicated as a possible cause of immune dysfunction during FIV and HIV-1 infection, as they are capable of modulating virus-specific and inflammatory immune responses. Additionally, the immunosuppressive capacity of feline Treg cells has been shown to be increased during FIV infection. We have previously shown that transient in vivo Treg cell depletion during asymptomatic FIV infection reveals FIV-specific immune responses suppressed by Treg cells. In this study, we sought to determine the immunological influence of Treg cells during acute FIV infection. We asked whether Treg cell depletion prior to infection with the highly pathogenic molecular clone FIV-C36 in cats could alter FIV pathogenesis. We report here that partial Treg cell depletion prior to FIV infection does not significantly change provirus, viremia, or CD4+ T cell levels in blood and lymphoid tissues during the acute phase of disease. The effects of anti-CD25 mAb treatment are truncated in cats acutely infected with FIV-C36 as compared to chronically infected cats or FIV-naïve cats, as Treg cell levels were heightened in all treatment groups included in the study within two weeks post-FIV infection. Our findings suggest that the influence of Treg cell suppression during FIV pathogenesis is most prominent after Treg cells are activated in the environment of established FIV infection

    Dietary fructose in relation to blood pressure and serum uric acid in adolescent boys and girls

    Get PDF
    Evidence that fructose intake may modify blood pressure is generally limited to adult populations. This study examined cross-sectional associations between dietary intake of fructose, serum uric acid and blood pressure in 814 adolescents aged 13–15 years participating in the Western Australian Pregnancy Cohort (Raine) Study. Energy-adjusted fructose intake was derived from 3-day food records, serum uric acid concentration was assessed using fasting blood and resting blood pressure was determined using repeated oscillometric readings. In multivariate linear regression models, we did not see a significant association between fructose and blood pressure in boys or girls. In boys, fructose intake was independently associated with serum uric acid (P<0.01), and serum uric acid was independently associated with systolic blood pressure (P<0.01) and mean arterial pressure (P<0.001). Although there are independent associations, there is no direct relationship between fructose intake and blood pressure. Our data suggest that gender may influence these relationships in adolescence, with significant associations observed more frequently in boys than girls

    Production of Embryonic and Fetal-Like Red Blood Cells from Human Induced Pluripotent Stem Cells

    Get PDF
    We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications

    Occupancy maps of 208 chromatin-associated proteins in one human cell type

    Get PDF
    Transcription factors are DNA-binding proteins that have key roles in gene regulation. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP–seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium

    Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcription factor binding to DNA requires both an appropriate binding element and suitably open chromatin, which together help to define regulatory elements within the genome. Current methods of identifying regulatory elements, such as promoters or enhancers, typically rely on sequence conservation, existing gene annotations or specific marks, such as histone modifications and p300 binding methods, each of which has its own biases.</p> <p>Results</p> <p>Herein we show that an approach based on clustering of transcription factor peaks from high-throughput sequencing coupled with chromatin immunoprecipitation (Chip-Seq) can be used to evaluate markers for regulatory elements. We used 67 data sets for 54 unique transcription factors distributed over two cell lines to create regulatory element clusters. By integrating the clusters from our approach with histone modifications and data for open chromatin, we identified general methylation of lysine 4 on histone H3 (H3K4me) as the most specific marker for transcription factor clusters. Clusters mapping to annotated genes showed distinct patterns in cluster composition related to gene expression and histone modifications. Clusters mapping to intergenic regions fall into two groups either directly involved in transcription, including miRNAs and long noncoding RNAs, or facilitating transcription by long-range interactions. The latter clusters were specifically enriched with H3K4me1, but less with acetylation of lysine 27 on histone 3 or p300 binding.</p> <p>Conclusion</p> <p>By integrating genomewide data of transcription factor binding and chromatin structure and using our data-driven approach, we pinpointed the chromatin marks that best explain transcription factor association with different regulatory elements. Our results also indicate that a modest selection of transcription factors may be sufficient to map most regulatory elements in the human genome.</p

    Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour

    Get PDF
    Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD
    corecore