489 research outputs found

    Mitochondrial glycolysis in a major lineage of eukaryotes

    Get PDF
    This is the author accepted manuscript. The final version is freely available from OUP via the DOI in this recordThe establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by the bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.TAW is supported by a Royal Society University Research Fellowship and NERC grant NE/P00251X/1. Work in the lab of MvdG was supported by Wellcome Trust grant 078566/A/05/Z. PGK wishes to acknowledge support by the German Research Foundation (DFG, grant KR 1661/6-1) and the Gordon and Betty Moore Foundation GBMF 4966 (grant DiaEdit)

    Schizophrenia as a disorder of disconnectivity

    Get PDF
    Schizophrenia is considered as a neurodevelopmental disorder with genetic and environmental factors playing a role. Animal models show that developmental hippocampal lesions are causing disconnectivity of the prefrontal cortex. Magnetic resonance imaging and postmortem investigations revealed deficits in the temporoprefrontal neuronal circuit. Decreased oligodendrocyte numbers and expression of oligodendrocyte genes and synaptic proteins may contribute to disturbances of micro- and macro-circuitry in the pathophysiology of the disease. Functional connectivity between cortical areas can be investigated with high temporal resolution using transcranial magnetic stimulation (TMS), electroencephalography (EEG), and magnetoencephalography (MEG). In this review, disconnectivity between different cortical areas in schizophrenia patients is described. The specificity and the neurobiological origin of these connectivity deficits and the relation to the symptom complex of schizophrenia and the glutamatergic and GABAergic system are discussed

    Community-specific evaluation of tool affordances in wild chimpanzees

    Get PDF
    The notion of animal culture, defined as socially transmitted community-specific behaviour patterns, remains controversial, notably because the definition relies on surface behaviours without addressing underlying cognitive processes. In contrast, human cultures are the product of socially acquired ideas that shape how individuals interact with their environment. We conducted field experiments with two culturally distinct chimpanzee communities in Uganda, which revealed significant differences in how individuals considered the affording parts of an experimentally provided tool to extract honey from a standardised cavity. Firstly, individuals of the two communities found different functional parts of the tool salient, suggesting that they experienced a cultural bias in their cognition. Secondly, when the alternative function was made more salient, chimpanzees were unable to learn it, suggesting that prior cultural background can interfere with new learning. Culture appears to shape how chimpanzees see the world, suggesting that a cognitive component underlies the observed behavioural patterns

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Analysis of meniscal degeneration and meniscal gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Menisci play a vital role in load transmission, shock absorption and joint stability. There is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1) to determine the prevalence of meniscal degeneration in OA patients, and 2) to examine gene expression in OA meniscal cells compared to normal meniscal cells.</p> <p>Methods</p> <p>Studies were approved by our human subjects Institutional Review Board. Menisci and articular cartilage were collected during joint replacement surgery for OA patients and lower limb amputation surgery for osteosarcoma patients (normal control specimens), and graded. Meniscal cells were prepared from these meniscal tissues and expanded in monolayer culture. Differential gene expression in OA meniscal cells and normal meniscal cells was examined using Affymetrix microarray and real time RT-PCR.</p> <p>Results</p> <p>The grades of meniscal degeneration correlated with the grades of articular cartilage degeneration (r = 0.672; P < 0.0001). Many of the genes classified in the biological processes of immune response, inflammatory response, biomineral formation and cell proliferation, including major histocompatibility complex, class II, DP alpha 1 (<it>HLA-DPA1</it>), integrin, beta 2 (<it>ITGB2</it>), ectonucleotide pyrophosphatase/phosphodiesterase 1 (<it>ENPP1</it>), ankylosis, progressive homolog (<it>ANKH</it>) and fibroblast growth factor 7 (<it>FGF7</it>), were expressed at significantly higher levels in OA meniscal cells compared to normal meniscal cells. Importantly, many of the genes that have been shown to be differentially expressed in other OA cell types/tissues, including ADAM metallopeptidase with thrombospondin type 1 motif 5 (<it>ADAMTS5</it>) and prostaglandin E synthase (<it>PTGES</it>), were found to be expressed at significantly higher levels in OA meniscal cells. This consistency suggests that many of the genes detected in our study are disease-specific.</p> <p>Conclusion</p> <p>Our findings suggest that OA is a whole joint disease. Meniscal cells may play an active role in the development of OA. Investigation of the gene expression profiles of OA meniscal cells may reveal new therapeutic targets for OA therapy and also may uncover novel disease markers for early diagnosis of OA.</p

    Electrophysiological dynamics of Chinese phonology during visual word recognition in Chinese-English bilinguals

    Get PDF
    Silent word reading leads to the activation of orthographic (spelling), meaning, as well as phonological (sound) information. For bilinguals, native language information can also be activated automatically when they read words in their second language. For example, when Chinese-English bilinguals read words in their second language (English), the phonology of the Chinese translations is automatically activated. Chinese phonology, however, consists of consonants and vowels (segmental) and tonal information. To what extent these two aspects of Chinese phonology are activated is yet unclear. Here, we used behavioural measures, event-related potentials and oscillatory EEG to investigate Chinese segmental and tonal activation during word recognition. Evidence of Chinese segmental activation was found when bilinguals read English words (faster responses, reduced N400, gamma-band power reduction) and when they read Chinese words (increased LPC, gamma-band power reduction). In contrast, evidence for Chinese tonal activation was only found when bilinguals read Chinese words (gamma-band power increase). Together, our converging behavioural and electrophysiological evidence indicates that Chinese segmental information is activated during English word reading, whereas both segmental and tonal information are activated during Chinese word reading. Importantly, gamma-band oscillations are modulated differently by tonal and segmental activation, suggesting independent processing of Chinese tones and segments

    Stability in Ecosystem Functioning across a Climatic Threshold and Contrasting Forest Regimes

    Get PDF
    Classical ecological theory predicts that changes in the availability of essential resources such as nitrogen should lead to changes in plant community composition due to differences in species-specific nutrient requirements. What remains unknown, however, is the extent to which climate change will alter the relationship between plant communities and the nitrogen cycle. During intervals of climate change, do changes in nitrogen cycling lead to vegetation change or do changes in community composition alter the nitrogen dynamics? We used long-term ecological data to determine the role of nitrogen availability in changes of forest species composition under a rapidly changing climate during the early Holocene (16k to 8k cal. yrs. BP). A statistical computational analysis of ecological data spanning 8,000 years showed that secondary succession from a coniferous to deciduous forest occurred independently of changes in the nitrogen cycle. As oak replaced pine under a warming climate, nitrogen cycling rates increased. Interestingly, the mechanism by which the species interacted with nitrogen remained stable across this threshold change in climate and in the dominant tree species. This suggests that changes in tree population density over successional time scales are not driven by nitrogen availability. Thus, current models of forest succession that incorporate the effects of available nitrogen may be over-estimating tree population responses to changes in this resource, which may result in biased predictions of future forest dynamics under climate warming

    Resequencing PNMT in European hypertensive and normotensive individuals: no common susceptibilily variants for hypertension and purifying selection on intron 1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human linkage and animal QTL studies have indicated the contribution of genes on Chr17 into blood pressure regulation. One candidate gene is <it>PNMT</it>, coding for phenylethanolamine-N-methyltransferase, catalyzing the synthesis of epinephrine from norepinephrine.</p> <p>Methods</p> <p>Fine-scale variation of <it>PNMT </it>was screened by resequencing hypertensive (n = 50) and normotensive (n = 50) individuals from two European populations (Estonians and Czechs). The resulting polymorphism data were analyzed by statistical genetics methods using Genepop 3.4, PHASE 2.1 and DnaSP 4.0 software programs. <it>In silico </it>prediction of transcription factor binding sites for intron 1 was performed with MatInspector 2.2 software.</p> <p>Results</p> <p><it>PNMT </it>was characterized by minimum variation and excess of rare SNPs in both normo- and hypertensive individuals. None of the SNPs showed significant differences in allelic frequencies among population samples, as well as between screened hypertensives and normotensives. In the joint case-control analysis of the Estonian and the Czech samples, hypertension patients had a significant excess of heterozygotes for two promoter region polymorphisms (SNP-184; SNP-390). The identified variation pattern of <it>PNMT </it>reflects the effect of purifying selection consistent with an important role of PNMT-synthesized epinephrine in the regulation of cardiovascular and metabolic functions, and as a CNS neurotransmitter. A striking feature is the lack of intronic variation. <it>In silico </it>analysis of <it>PNMT </it>intron 1 confirmed the presence of a human-specific putative Glucocorticoid Responsive Element (GRE), inserted by <it>Alu</it>-mediated transfer. Further analysis of intron 1 supported the possible existence of a full Glucocorticoid Responsive Unit (GRU) predicted to consist of multiple gene regulatory elements known to cooperate with GRE in driving transcription. The role of these elements in regulating <it>PNMT </it>expression patterns and thus determining the dynamics of the synthesis of epinephrine is still to be studied.</p> <p>Conclusion</p> <p>We suggest that the differences in PNMT expression between normotensives and hypertensives are not determined by the polymorphisms in this gene, but rather by the interplay of gene expression regulators, which may vary among individuals. Understanding the determinants of PNMT expression may assist in developing PNMT inhibitors as potential novel therapeutics.</p
    corecore