219 research outputs found

    Impact of droplets on inclined flowing liquid films

    Get PDF
    The impact of droplets on an inclined falling liquid film is studied experimentally using high-speed imaging. The falling film is created on a flat substrate with controllable thicknesses and flow rates. Droplets with different sizes and speeds are used to study the impact process under various Ohnesorge and Weber numbers, and film Reynolds numbers. A number of phenomena associated with droplet impact are identified and analysed, such as bouncing, partial coalescence, total coalescence, and splashing. The effects of droplet size, speed, as well the film flow rate are studied culminating in the generation of an impact regime map. The analysis of the lubrication force acted on the droplet via the gas layer shows that a higher flow rate in the liquid film produces a larger lubrication force, slows down the drainage process, and increases the probability of droplet bouncing. Our results demonstrate that the flowing film has a profound effect on the droplet impact process and associated phenomena, which are markedly more complex than those accompanying impact on initially quiescent films

    Impact of droplets on liquid films in the presence of surfactant

    Get PDF
    The impact of droplets on liquid films is ubiquitous in natural and industrial processes, and surfactants can significantly alter the impact process by changing the local surface tension. Here we study the impact of droplets on liquid films in the presence of surfactant using high-speed photography, and reveal the flow pattern by dye-tracing. The effects of the droplet size and speed, and the initial film thickness on the impact process are elucidated. The results show that the flow is significantly affected by adding surfactant to the droplet, the liquid film, or to both phases. In particular, the film dye patterns form concentric circles and flower-shaped structures at low and high droplet Weber numbers, respectively. We also show how surfactant-induced Marangoni stresses modify these flow patterns, and alter the characteristics of the phenomena associated with the impact process, such as the propagation of capillary waves, the evolution of the crown, and the formation of secondary droplets. During the impact of surfactant droplets on thin water films, the Marangoni stresses can be sufficiently strong so as to drive film dewetting

    Assessment of power plant emission and its health impact in Gaza

    Get PDF
    The aim of study was to investigate the concentrations of the ambient air pollutants (i.e PM2.5, CO, CO2) and to examine the health impacts on the residentials living surrounding the power plant in Gaza City-Palestine.The pollutants were monitored several distance surrounding the plant for a period of four months during both summer and winter seasons using a portable laser particle counter and gaseous monitor. A public health questionnaire was also distributed on the residents living around the power plant in order to assess the impact of air pollution on their health status.The results showed that the concentration of particulate matter exceeded the WHO standard where the highest level was 79 ?g/m3 and the lowest level was 49?g/m3. However the concentration of carbon monoxide was lower than the WHO standards where the highest level was 2.18 ppm and lowest level was 0.1 ppm. Moreover, the concentration of carbon dioxide oscillated from 254 ppm to 514 ppm. The health assessment results showed that 50% of the study sample suffered of breathing difficulties.This study concluded that the concentration of particulate matter and carbon dioxide were high, while the level of carbon monoxide was low, furthermore the level of public awareness was good. Meanwhile 40% of population sample visited the hospital because of a disease that infects the respiratory tract

    New anti-perovskite-type Superconductor ZnNyNi3

    Full text link
    We have synthesized a new superconductor ZnNyNi3 with Tc ~3 K. The crystal structure has the same anti-perovskite-type such as MgCNi3 and CdCNi3. As far as we know, this is the third superconducting material in Ni-based anti-perovskite series. For this material, superconducting parameters, lower-critical field Hc1(0), upper-critical field Hc2(0), coherence length x(0), penetration depth l(0), and Gintzburg -Landau parameter k(0) have been experimentally determined.Comment: 13 pages, 3 figures, 1 tabl

    An AI-based non-intrusive reduced-order model for extended domains applied to multiphase flow in pipes

    Get PDF
    The modeling of multiphase flow in a pipe presents a significant challenge for high-resolution computational fluid dynamics (CFD) models due to the high aspect ratio (length over diameter) of the domain. In subsea applications, the pipe length can be several hundreds of meters vs a pipe diameter of just a few inches. Approximating CFD models in a low-dimensional space, reduced-order models have been shown to produce accurate results with a speed-up of orders of magnitude. In this paper, we present a new AI-based non-intrusive reduced-order model within a domain decomposition framework (AI-DDNIROM), which is capable of making predictions for domains significantly larger than the domain used in training. This is achieved by (i) using a domain decomposition approach; (ii) using dimensionality reduction to obtain a low-dimensional space in which to approximate the CFD model; (iii) training a neural network to make predictions for a single subdomain; and (iv) using an iteration-by-subdomain technique to converge the solution over the whole domain. To find the low-dimensional space, we compare Proper Orthogonal Decomposition with several types of autoencoder networks, known for their ability to compress information accurately and compactly. The comparison is assessed with two advection-dominated problems: flow past a cylinder and slug flow in a pipe. To make predictions in time, we exploit an adversarial network, which aims to learn the distribution of the training data, in addition to learning the mapping between particular inputs and outputs. This type of network has shown the potential to produce visually realistic outputs. The whole framework is applied to multiphase slug flow in a horizontal pipe for which an AI-DDNIROM is trained on high-fidelity CFD simulations of a pipe of length 10 m with an aspect ratio of 13:1 and tested by simulating the flow for a pipe of length 98 m with an aspect ratio of almost 130:1. Inspection of the predicted liquid volume fractions shows a good match with the high fidelity model as shown in the results. Statistics of the flows obtained from the CFD simulations are compared to those of the AI-DDNIROM predictions to demonstrate the accuracy of our approach

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Anisotropic Magnetoresistance Effects in Fe, Co, Ni, Fe_4N, and Half-Metallic Ferromagnet: A Systematic Analysis

    Full text link
    We theoretically analyze the anisotropic magnetoresistance (AMR) effects of bcc Fe (+), fcc Co (+), fcc Ni (+), Fe4_4N (-), and a half-metallic ferromagnet (-). The sign in each ( ) represents the sign of the AMR ratio observed experimentally. We here use the two-current model for a system consisting of a spin-polarized conduction state and localized d states with spin--orbit interaction. From the model, we first derive a general expression of the AMR ratio. The expression consists of a resistivity of the conduction state of the σ\sigma spin (σ=\sigma=\uparrow or \downarrow), ρsσ\rho_{s \sigma}, and resistivities due to s--d scattering processes from the conduction state to the localized d states. On the basis of this expression, we next find a relation between the sign of the AMR ratio and the s--d scattering process. In addition, we obtain expressions of the AMR ratios appropriate to the respective materials. Using the expressions, we evaluate their AMR ratios, where the expressions take into account the values of ρs/ρs\rho_{s \downarrow}/\rho_{s \uparrow} of the respective materials. The evaluated AMR ratios correspond well to the experimental results.Comment: 17 pages, 12 figures, to be published in J. Phys. Soc. Jpn, minor mistakes corrected, final versio
    corecore