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Abstract In this paper, we establish sufficient conditions for the existence of local solutions for a class of
Cauchy type problems with arbitrary fractional order. The results are established by the application of the
contraction mapping principle and Schaefer’s fixed point theorem. An example is provided to illustrate the
applicability of the results.
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1 Introduction

In the recent years, there has been a great development in the study of fractional differential equations. This
advancement is ranging from the theoretical analysis of the subject to analytical and numerical techniques. In
fact, the extensive application of fractional differential equations appeared in many engineering and scientific
disciplines, such as physics and engineering [15], diffusion processes ([14,24,29]), electrochemistry [17],
electromagnetism [6], numerical analysis [7], optimal control ([12,16]), variational analysis [23], chaotic
system [30], viscoelasticity [11], biology ([9,10]), biophysics [25], and economics [26]. The theoretical analysis
of these kinds of differential equations is very important for the applicability on the reality. Therefore, as a part
of theoretical analysis, the pre-knowledge of the existence of a solution to fractional differential equations is
the first step for finding the analytic solution. Hence, an extensive research in existence of solution for different
kinds of fractional differential equations is recently completed by many authors (see [2,4,5,8,18–21,27,31]
and references therein). In [13] and [18], the authors obtained sufficient conditions for the existence of solutions
of boundary value problem for differential equations of fractional order α ∈ (0, 1] and α ∈ (1, 2] involving the
Caputo fractional derivative and nonlocal conditions. The researchers in the articles [4,21], and [27] considered
the existence problem of solutions of boundary value problems for differential equations of fractional order
α ∈ (2, 3]. The existence and uniqueness of initial value problems of some differential equations of other

M. M. Matar (B)
Mathematics Department, Al-Azhar University-Gaza, Gaza, Palestine
E-mail: mohammed_mattar@hotmail.com

J. J. Trujillo
Departamento de Análisis Matemático, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
E-mail: jtrujill@ullmat.es

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191372157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s40065-015-0139-4&domain=pdf


216 Arab. J. Math. (2016) 5:215–224

fractional orders are investigated by many authors (see [2,22]). The general theory of Cauchy fractional
differential equations is deeply introduced in the monograph [1] and in the survey [28]. In fact, the equivalent
Volterra integral equation to Cauchy problem for nonlinear fractional differential equations introduced in the
cited articles is essential to prove the existence of such systems. However, the generalization idea of existence
problems to arbitrary fractional order with arbitrary inner point as initial condition has not been investigated
by the researchers. Motivated by these ideas, we study in this paper the existence of a solution to the Cauchy
problem {

C Dα
t0x(t) = f (t, x(t)), t ∈ [t0, θ) ∪ (θ, T ]

x (k)(θ) = xk, k = 0, 1, 2, . . . , n − 1, θ ∈ J,
(1.1)

at any inner point θ of a finite interval J = [t0, T ] involving the Caputo fractional derivative C Dα
t0 , where

α ∈ (n − 1, n], n ∈ N, and f is a given continuous function. The inner points of the interval involved in the
problem can be used as impulses in a physical approach or sometimes nonlocal boundary condition, hence the
problem may be considered as a case of nonlocal fractional differential model. However, the used technique
of obtaining the solution of the problem is new compared with any previous works ([1]: Section 3.4.2) and the
results on arbitrary fractional ordered differential equations generalize the existing problems.

2 Preliminaries

We introduce in this section some basic definitions and properties of fractional calculus (see [1]) which will
be used in this paper.

Definition 2.1 A function f is said to be fractional integrable of order α > 0 if

I α
t0 f (t) =

t∫
t0

(t − s)α−1

� (α)
f (s)ds < ∞,

and if α = 0, then I 0 f (t) = f (t).

Next, we introduce the Caputo fractional derivative.

Definition 2.2 The Caputo fractional derivative of x is defined as:

C Dα
t0x(t) = I n−α

t0

(
dnx

dtn

)
(t) =

t∫
t0

(t − s)n−α−1

� (n − α)
x (n)(s)ds

for t > t0.

In what follows, we assume that f and x are continuous functions, such that f and C Dα
t0x are fractional

integrable of any order less than or equal α.
The compositions between the Caputo fractional derivative and fractional integrals are given by the fol-

lowing lemma.

Lemma 2.3 Let t ∈ J and ck ∈ R. Then⎧⎪⎨
⎪⎩

C Dα
t0 I

α
t0 x(t) = x(t),

I α C
t0 Dα

t0x(t) = x(t) + c0 + c1(t − t0) + c2(t − t0)2 + · · · + cn−1(t − t0)n−1,

C Dα
t0x(t) = 0, for x(t) = c0 + c1(t − t0) + c2(t − t0)2 + · · · + cn−1(t − t0)n−1.

The following result will be used in the proof of the main theorem in the next section.

Lemma 2.4 Let (un) be a sequence of real numbers and n, k ∈ N, such that 0 ≤ k ≤ n − 1. If v is a positive
real number, then

n−k−1∑
m=0

n−k−m−1∑
r=0

(−1)r
vr+m

r !m! um+k+r = uk . (2.1)
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Proof The left-hand side of Eq. (2.1) can be rearranged as:

n−k−1∑
m=0

(
m∑

r=0

(−1)m−r

r !(m − r)!

)
vmuk+m .

Hence, by Binomial expansion, the inner sum can be reduced to

1

m!
m∑

r=0

(−1)m−r
(
m
r

)
= 0

for all m ≥ 1, by which the result is obtained. ��

3 Existence problems for linear case

Consider the linear fractional differential equation{
C Dα

t0x(t) = f (t), t ∈ J − {θ}
x (k)(θ) = xk ∈ R, k = 0, 1, 2, . . . , n − 1, θ ∈ J.

(3.1)

We introduce next the basic idea in this article, namely, the solution of ( 3.1) as an integral form.

Theorem 3.1 Let f be a continuous real valued function. The fractional differential equation (3.1) is equivalent
to the integral equation

x(t) =
t∫

t0

(t − s)α−1

�(α)
f (s)ds +

n−1∑
k=0

(t − θ)k

k!

⎛
⎝xk −

θ∫
t0

(θ − s)α−k−1

�(α − k)
f (s)ds

⎞
⎠ , t ∈ J. (3.2)

Proof Let α = n. Then Eq. (3.1) is equivalent to nth order classical differential equation{
dn
dtn x(t) = f (t), t ∈ J − {θ}
x (k)(θ) = xk, k = 0, 1, 2, . . . , n − 1, θ ∈ J

which can be integrated n times to have

x(t) =
n−1∑
k=0

(t − θ)k

k! xk +
t∫

θ

· · ·
s1∫

θ

f (s0)ds0 · · · dsn−1

that can be reduced to

x(t) =
n−1∑
k=0

(t − θ)k

k! xk +
t∫

θ

(t − s)n−1

(n − 1)! f (s)ds. (3.3)

Using binomial expansion, we have

t∫
θ

(t − s)n−1

(n − 1)! f (s)ds

=
t∫

t0

(t − s)n−1

(n − 1)! f (s)ds −
θ∫

t0

(t − s)n−1

(n − 1)! f (s)ds

=
t∫

t0

(t − s)n−1

(n − 1)! f (s)ds −
θ∫

t0

(t − θ + θ − s)n−1

(n − 1)! f (s)ds

=
t∫

t0

(t − s)n−1

(n − 1)! f (s)ds −
n−1∑
k=0

(t − θ)k

k!

⎛
⎝ θ∫

t0

(θ − s)n−k−1

(n − k − 1)! f (s)ds

⎞
⎠ .
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In accordance with (3.3), Eq. (3.2) follows. Now, let n − 1 < α < n, Lemma 2.3, implies that

I α
t0 f (t) = I α

t0

(
C Dα

t0

)
x(t) = x(t) +

n−1∑
k=0

ck(t − t0)
k . (3.4)

Differentiating Eq. (3.4) k times, we have

n−k−1∑
m=0

(k + m)!
m! cm+k(t − t0)

m = I α−k
t0 f (t) − x (k)(t) (3.5)

for 0 ≤ k ≤ n−1. In accordance with the given conditions in (3.1), Eq. (3.5) can be rewritten in the following
array form (assuming 0! = 1)⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1!
1! (θ − t0)1

2!
2! (θ − t0)2 · · · (n−2)!

(n−2)! (θ − t0)n−2 (n−1)!
(n−1)! (θ − t0)n−1

0 1!
0! (θ − t0)0

2!
1! (θ − t0)1 · · · (n−2)!

(n−3)! (θ − t0)n−3 (n−1)!
(n−2)! (θ − t0)n−2

0 0 2!
0! (θ − t0)0 · · · (n−2)!

(n−4)! (θ − t0)n−4 (n−1)!
(n−3)! (θ − t0)n−3

...
...

... · · · ...
...

0 0 0 0 (n−2)!
0! (θ − t0)0

(n−1)!
1! (θ − t0)1

0 0 0 0 0 (n−1)!
0! (θ − t0)0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
...

cn−2

cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I α
t0 f (θ) − x0

I α−1
t0 f (θ) − x1

I α−2
t0 f (θ) − x2

...

I α−n+2
t0 f (θ) − xn−2

I α−n+1
t0 f (θ) − xn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which can be algebraically solved to obtain, for r = 1, 2, . . . , n,

cn−r = 1

(n − r)!
r−1∑
k=0

(−1)k(θ − t0)k

k!
(
I α−n+r−k
t0 f (θ) − xn−r+k

)
.

Alternatively, for m = 0, 1, 2 · · · , n − 1, it can be rewritten as:

cm = 1

m!
n−m−1∑
k=0

(−1)k(θ − t0)k

k!
(
I α−m−k
t0 f (θ) − xm+k

)
. (3.6)

Indeed, by Lemma 2.4, with v = θ − t0 and uk = I α−k f (θ) − xk , Eq. (3.6) is a solution of (3.5) with t = θ .
In accordance with (3.6) and (3.4), we deduce that

x(t) = I α
t0 f (t) +

n−1∑
k=0

n−k−1∑
m=0

(−1)m (θ − t0)m(t − t0)k

m!k!
(
xm+k − I α−m−k

t0 f (θ)
)

.

The terms of this double summation can be rearranged to have

x(t) =
t∫

t0

(t − s)α−1

� (α)
f (s)ds +

n−1∑
k=0

ψk(t)

⎛
⎝xk −

θ∫
t0

(θ − s)α−k−1

(α − k)! f (s)ds

⎞
⎠ (3.7)
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where

ψk(t) =
k∑

m=0

(−1)k−m (θ − t0)k−m

(k − m)!
(t − t0)m

m! , k = 0, 1, . . . n − 1.

If θ = t0, then ψk(t) = (t−t0)k

k! , by which the solution of (3.1) is

x(t) =
t∫

t0

(t − s)α−1

� (α)
f (s)ds +

n−1∑
k=0

(t − t0)k

k! xk . (3.8)

Next, let t0 < θ ≤ T . Then binomial expansion can be applied to obtain

ψk(t) = (θ − t0)k

k!
k∑

m=0

(
k
m

)(
t − t0
θ − t0

)m

(−1)k−m

= (θ − t0)k

k!
(
t − θ

θ − t0

)k

= (t − θ)k

k!
by which, Eq. (3.7) leads to Eq. (3.2).

On the other hand, applying the operator C Dα
t0 , n − 1 < α ≤ n to Eq. (3.2), and using Lemma 2.3, we get

Eq. (3.1) which completes the proof. ��
The following is a direct result of Theorem 3.1.

Corollary 3.2 Let c be any real number. Then the fractional differential system{
C Dα

t0x(t) = c, n − 1 < α ≤ n, n ∈ N,

x (k)(θ) = xk ∈ R, k = 0, 1, 2, . . . , n − 1, θ ∈ J
(3.9)

is equivalent to

x(t) = c (t − t0)α

� (α)
+

n−1∑
k=0

(t − θ)k

k!
(
xk − c(θ − t0)α−k

k!� (α − k)

)
.

In particular, if c = 0, then (3.9) is equivalent to

x(t) =
n−1∑
k=0

xk
k! (t − θ)k .

4 Existence problems for nonlinear cases

We investigate in this section the existence of a local solution for the fractional systems (1.1) by applying
Banach’s and Schaefer’s fixed point theorems.

Let Jh = [θ − h, θ + h] ⊂ (t0, T ), where 0 < h < min{θ − t0, T − θ}, and Yh = C(Jh,R) be the
Banach space of all continuous functions y defined on Jh with values in R, such that C Dα

θ−h y exists. Let
f ∈ C(Jh × Yh, Yh) be a fractional integrable function of order α > 0 that satisfies the following hypothesis:

(H1) There exists a positive constant A such that

‖ f (t, x) − f (t, y)‖ ≤ A‖x − y‖,
for any t ∈ Jh and x, y ∈ Yh . Moreover, let B = supt∈J ‖ f (t, 0)‖ and C = max{A, B}.

123



220 Arab. J. Math. (2016) 5:215–224

In accordance with Theorem 3.1, the fractional nonlinear system{
C Dα

θ−hx(t) = f (t, x(t)), t ∈ Jh − {θ}
x (k)(θ) = xk ∈ R, k = 0, 1, 2, . . . , n − 1,

(4.1)

is equivalent to the integral equation

x(t) =
t∫

θ−h

(t − s)α−1

� (α)
f (s, x(s))ds

+
n−1∑
k=0

(t − θ)k

k!

⎛
⎝xk −

θ∫
θ−h

(θ − s)α−k−1

� (α − k)
f (s, x(s))ds

⎞
⎠ . (4.2)

Accordingly, we define the operator � on Yh as follows:

�x(t) =
t∫

θ−h

(t − s)α−1

� (α)
f (s, x(s))ds

+
n−1∑
k=0

(t − θ)k

k!

⎛
⎝xk −

θ∫
θ−h

(θ − s)α−k−1

� (α − k)
f (s, x(s))ds

⎞
⎠ . (4.3)

The next hypothesis is essential to state and prove the first main result in this section.

(H2) Let θ and r be positive real numbers such that

γ = Chα

(
2α

� (α + 1)
+

n−1∑
k=0

1

k!� (α − k + 1)

)
< 1, and

r ≥ γ + ∑n−1
k=0

hk
k! ‖xk‖

1 − γ
.

Moreover, let � = {x ∈ Yh : ‖x‖ ≤ r} .

Theorem 4.1 Assume that (H1) and (H2) are satisfied. Then, there exists a unique solution for the fractional
system (4.1) in Yh .

Proof We use the Banach fixed point theorem to show that � defined by (4.3) has a fixed point on the closed
subspace � of the Banach space Yh . This fixed point satisfies the integral equation (4.2), hence is a solution
of (4.1). Let t ∈ Jh . Then

|�x(t)| ≤ (A ‖x‖ + B)

� (α + 1)
(t − θ + h)α +

n−1∑
k=0

|t − θ |k
k!

(
‖xk‖ + (A ‖x‖ + B)

� (α − k + 1)
hα−k

)

≤ (A ‖x‖ + B)

� (α + 1)
(2h)α +

n−1∑
k=0

hk

k! ‖xk‖ + hα
n−1∑
k=0

(A ‖x‖ + B)

k!� (α − k + 1)

≤
n−1∑
k=0

hk

k! ‖xk‖ + Bhα

(
2α

� (α + 1)
+

n−1∑
k=0

1

k!� (α − k + 1)

)

+Ahα

(
2α

� (α + 1)
+

n−1∑
k=0

1

k!� (α − k + 1)

)
‖x‖

≤ (1 − γ ) r + γ r = r.
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It is obviously by (H2) that � maps � into itself. Next, let x, y ∈ �. Then

|�x(t) − �y(t)| ≤ A ‖x − y‖
� (α + 1)

(t − θ + h)α +
n−1∑
k=0

|t − θ |k
k!

A ‖x − y‖
� (α − k + 1)

hα−k

≤ Ahα

(
2α

� (α + 1)
+

n−1∑
k=0

1

k!� (α − k + 1)

)
‖x − y‖

≤ γ ‖x − y‖ ,

since γ < 1, then � is a contraction mapping on �. Hence, � has a fixed point which is the unique solution
to (4.1). ��

Next, we show the existence of a local solution for the Cauchy problem{C Dα
T−h1

x(t) = f (t, x(t)), t ∈ [T − h1, T ),

x (k)(T ) = xk ∈ R, k = 0, 1, 2, . . . , n − 1.
(4.4)

Let Jh1 = [T − h1, T ] ⊂ (t0, T ], where 0 < h1 < T − t0, and Yh1 = C(Jh1,R) be the Banach space of
all continuous real valued functions defined on Jh1 , such that

C Dα
T−h1

y exists. Let f ∈ C(Jh1 × Yh1, Yh1) be
a fractional integrable function of order α > 0. Hence, by Theorem 3.1, the system (??) is equivalent to the
Fredholm–Volterra integral equation

x(t) = 1

� (α)

t∫
T−h1

(t − s)α−1 f (s, x(s))ds

+
n−1∑
k=0

(−1)k
(T − t)k

k!

⎛
⎜⎝xk −

T∫
T−h1

(T − s)α−k−1

� (α − k)
f (s, x(s))ds

⎞
⎟⎠ ,

for x ∈ Yh1 and t ∈ Jh1 .
We need to modify the hypothesis (H2) as the following:

(H3) Let β and r be positive real numbers such that

β = Chα
1

(
1

� (α + 1)
+

n−1∑
k=0

1

k!� (α − k + 1)

)
< 1,

r ≥ β + ∑n−1
k=0

hk1
k! ‖xk‖

1 − β
.

Moreover, let � = {
x ∈ Yh1 : ‖x‖ ≤ r

}
.

The proof of the next result is similar to that one of Theorem 4.1, hence it is omitted.

Corollary 4.2 Assume that (H1) and (H3) are satisfied. Then, there exists a unique solution for the fractional
system (4.4) in Yh1 .

Let f ∈ C(Jh2 × Yh2 , Yh2) be a fractional integrable function of order α > 0, where Jh2 = [t0, t0 + h2],
0 < h2 < T − t0, and Yh2 = C(Jh2 ,R) be the Banach space of all continuous real valued functions Jh2 , such
that C Dα

t0 y exists. Next result concerns with the existence of a local solution for the Cauchy problem{
C Dα

t0x(t) = f (t, x(t)), t ∈ (t0, t0 + h2],
x (k)(t0) = xk ∈ R, k = 0, 1, 2, . . . , n − 1,

(4.5)

which is equivalent to Volterra integral equation (see Eq. (3.8))

x(t) =
t∫

t0

(t − s)α−1

� (α)
f (s, x(s))ds +

n−1∑
k=0

(t − t0)k

k! xk .
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The hypothesis (H2) will be replaced by the following:

(H4) Let η and r be positive real numbers such that

η = Chα
2

� (α + 1)
< 1,

r ≥ η + ∑n−1
k=0

hk2
k! ‖xk‖

1 − η
.

Moreover, let � = {
x ∈ Yh2 : ‖x‖ ≤ r

}
.

Corollary 4.3 Assume that (H1) and (H4) are satisfied. Then, there exists a unique solution for the fractional
system (4.5) in Yh2 .

The last result is devoted to solve the existence problem of the fractional system (4.1) which has equivalent
integral Eq. (4.2). We define the operator � : C(Jh,R) → C(Jh,R), Jh = [θ − h, θ + h] , 0 < h <
min{T − θ, θ − t0} as in Eq. (4.3), and using two versions of Schaefer’s fixed point theorem to obtain the
existence of the required local solution.

Theorem 4.4 [3] If � is a closed bounded convex subset of a Banach space X and � : � → � is completely
continuous, then �has a fixed point in �.

Theorem 4.5 [3] Let X be a Banach space. Assume that � : X → X is completely continuous operator and
the set V = {x ∈ X : x = μ�x, 0 < μ < 1} is bounded. Then, � has a fixed point in X.

The last result can be introduced now.

Theorem 4.6 Let f : Jh × C(Jh,R) → C(Jh,R) be a continuous bounded function. Then, the fractional
differential equation (4.1) has at least one solution.

Proof The continuity of f on Jh × C(Jh,R) implies the continuity of � on C(Jh,R). Define the nonempty
closed convex subset � = {x ∈ C(Jh,R) : ‖x‖ ≤ r, r > 0} of the Banach space C(Jh,R). If fm =
max{‖ f (t, x)‖ : (t, x) ∈ Jh × �}, then for any x ∈ �, t ∈ Jh , we have

|�x(t)| ≤ fm (t − θ + h)α

� (α + 1)
+

n−1∑
k=0

|t − θ |k
k!

(
‖xk‖ + fmhα−k

� (α − k + 1)

)
. (4.6)

Hence ‖�x‖ ≤ M, where M = fm(2h)α

�(α+1) + ∑n−1
k=0

|h|k
k!

(
‖xk‖ + fmhα−k

�(α−k+1)

)
. Further, we find that

∣∣∣(�x)
′
(t)

∣∣∣ ≤ fm (t − θ + h)α−1

� (α)
+

n−1∑
k=1

|t − θ |k−1

(k − 1)!
(

‖xk‖ + fmhα−k

� (α − k + 1)

)

≤ fm (2h)α−1

� (α)
+

n−1∑
k=1

hk−1

(k − 1)!
(

‖xk‖ + fmhα−k

� (α − k + 1)

)

= M
′
.

Hence for t1, t2 ∈ J, t1 < t2, we have

|�x(t2) − �x(t1)| ≤
t2∫

t1

∣∣∣(�x)
′
(t)

∣∣∣ dt ≤ M
′
(t2 − t1) .

This implies that� is equicontinuous on Jh . Thus, by the Arzela–Ascoli theorem, the operator� is completely
continuous. Next, let x ∈ V = {y ∈ � : y = μ�y, 0 < λ < 1}. Then x = μ�x, for some μ ∈ (0, 1). Using
(4.6), we have |x(t)| = μ |�x(t)| ≤ M, for any t ∈ Jh . Hence ‖x‖ ≤ M, which implies the boundedness of
V . As a consequence of Theorems 4.4, or 4.5 , the operator � has at least one fixed point x ∈ �, which is the
solution of (4.1). This finishes the proof. ��
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We give an example to explain the applicability of the above results.

Example 4.7 Consider the following nonlinear fractional differential equation{
C D

√
10

0 x(t) = t x(t)+1
4(1+x(t)) , t ∈ [0, 0.5) ∪ (0.5, 1]

x (k)(0.5) = (0.5)k, k = 0, 1, 2, 3.
(4.7)

The function f (t, x) = t x+1
4(1+x) is continuous and uniformly bounded on [0, 1] × [0, ∞). Hence, in view

of Theorem 4.6, there exists a solution of (4.7). Moreover, f is globally Lipstchitz on [0, 1] × [0,∞). By
simple calculations, we have max {η, β, γ } ≤ 0.61. Hence, for large values of r, all hypotheses (H1)–(H4) are
satisfied. Therefore, using any above results, we can assert that (4.7) has a local solution for any θ ∈ J.
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