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Abstract

Multiphase flow problems are often extremely complex due to their strong non-

linearity. To study multiphase flow, it is important to simulate or measure key

parameters accurately, such as pressure drops and flow rates. Therefore, it is

essential to place the sensors at the locations with high impact, and to avoid

locations with low impact, where impact is determined by a function such as one

of the key variables like pressure drop or flow rate. In this paper, an ensemble

method is used to optimise sensor locations for falling film problems based on

an importance map. The importance map can identify the important regions

according to a target function. The sensor locations are selected based on the

importance map, the variation of the variables, and the costs of performing the

measurements. We demonstrate the approach by applying data assimilation

and show that the optimised sensor locations can significantly improve the data

assimilation results. Through sensitivity analysis, sensor optimisation, and data

assimilation, this study, for the first time, provides a systematic linkage between

the experiments and the models for falling film problems. It also presents a new

goal or target based method for sensor placement. This method can be extended

to other complex multiphase flow problems.

Keywords: Sensor optimisation, Sensitivity analysis, Falling film, Data

∗Corresponding author
Email address: z.che@imperial.ac.uk (Zhizhao Che)

Preprint submitted to International Journal of Multiphase Flow June 28, 2014



assimilation, Adaptive observation

1. Introduction

Multiphase flows are characterised by their complexity due to the presence

of interfaces and the interaction between different phases. There are many in-

stabilities (Gouesbet and Berlemont, 1993) producing phenomena which have

attracted the attention of scientists, engineers, and artists. In numerical simula-5

tions and experimental measurements, due to the complexity of the multiphase

systems, it is challenging to simulate or measure all the features. With limited

resources of simulations and experiments, the problems are often simplified and

only the most important features involved in the phenomena are considered.

For example, when a liquid slug is moving along a pipe (Hewitt, 1978), many10

phenomena may occur, such as slug initiation, gas entrainment, and slug prop-

agation. Therefore, researchers often use correlations and closure equations to

simplify the problem. Another example is a falling liquid film, which is a com-

mon phenomenon not only in industry but also in nature. Researchers have

built many low-dimensional models to simplify the falling film problem, e.g., t-15

wo dimensional models only considering the film evolution along the streamwise

direction (Shkadov, 1967), three dimensional models considering the film evo-

lution along the streamwise and the spanwise directions (Scheid et al., 2006).

Even after the aforementioned simplification, large volumes of data are often

generated in experiments and in simulations. For example, when high speed20

photography (Thoroddsen et al., 2008) is used to record fast evolving phenom-

ena such as droplet breakup, coalescence, and impact, several gigabytes of data

are generated in less than one second. Despite this, researchers are always try-

ing to pursue higher speeds and better resolution of high speed photography in

multiphase phenomena.25

For complex multiphase problems, it is important that limited resources

are used efficiently to capture the most important features. Therefore, it is

necessary to define these features, or even better, to develop a method to help
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researchers determine the most critical features to simulate or to measure. Then

it is possible to use these limited resources to accurately resolve the critical30

parts and try to eliminate costs due to unnecessary parts which have negligible

effect. Once the important features are determined, researchers can speed up

simulation by focusing only on the necessary features, and reduce experimental

costs by measuring only the important information.

Whether a feature or a parameter is important depends on the information35

we are interested in, or the target. In this paper, we use an ensemble method

to determine the important region for target functions in a falling film problem.

Then the important region is used to optimise the sensor locations in a pseudo

or ‘duel-twin’ experiment (Bengtsson et al., 1981). Data assimilation (Kalnay,

2003; Evensen, 2003, 2009; Navon, 2009) is then performed to incorporate the40

experimental results into the simulation.

The falling film problem is used investigate the use of ensemble methods for

sensitivity analysis, sensor optimisation, and data assimilation. Flow of a falling

liquid film is a phenomenon endowed with rich dynamic features (Chang, 1994;

Chang and Demekhin, 2002; Craster and Matar, 2009; Kalliadasis et al., 2011).45

It is characterised by strong nonlinearity, which makes it difficult to simulate

flow qualitatively over long periods. Even though the flow of falling films has

been widely studied in the literature, it still remains a popular research topic and

attracts the attention of mathematicians, physicists, and engineers. Numerical

simulations using the full physics (Gao et al., 2003) or low-dimensional modelling50

(Scheid et al., 2006) have been reported. Various aspects of falling films have

been measured experimentally, such as film thickness (Zhou et al., 2009) and

velocity distribution (Adomeit and Renz, 2000). Effects of different influencing

factors in falling films have been studied, such as the effects of thermocapillarity

(Frank and Kabov, 2006), electric fields (Tseluiko and Papageorgiou, 2006),55

centrifugal forces (Matar et al., 2005), and surfactants (Strobel and Whitaker,

1969; Ji and Setterwall, 1994). Different processes that may be involved in the

phenomena have been studied, such as heat transfer (Scheid et al., 2008), mass

transfer (Yang and Wood, 1992), chemical reactions (Dabir et al., 1996), and
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phase change (Palen et al., 1994).60

The methods to calculate the sensitivity can be categorised into determin-

istic methods and statistical methods (Cacuci, 2003; Cacuci et al., 2005). The

deterministic methods (Ionescu-Bujor and Cacuci, 2004), such as direct method,

FSAP (Forward Sensitivity Analysis Procedure) and ASAP (Adjoint Sensitivi-

ty Analysis Procedure), involve differentiation of the system under investigation65

and exactly computing the sensitivities; while the statistical methods, such as

sampling based methods, variance based methods, and FAST (Fourier Ampli-

tude Sensitivity Test), rely on multiple simulations to obtain statistically reliable

results (Cacuci and Ionescu-Bujor, 2004). By operating backward in time to de-

scribe the propagation of information, adjoint models can be used for sensitivity70

analysis and adaptive observations (Errico, 1997; Palmer et al., 1998; Baker and

Daley, 2000; Daescu and Navon, 2004; Alekseev and Navon, 2010; Godinez and

Daescu, 2011). In our previous study, we presented an ensemble method to

study the sensitivity (Che et al., 2013), which is simple to implement, and can

be used for different target functions for various purposes. In this paper, the75

method is used to study the sensitivity of a falling liquid film, and then to

perform data assimilation based on the optimised sensor locations.

This paper attempts to build a systematic linkage between experimental

measurements and numerical simulations through sensitivity analysis, sensor

optimisation, and data assimilation. The method presented in this paper can80

be used not only in falling film problems, but also in a wide range of other appli-

cations in multiphase flow. The paper is organised as follows. The methods for

the falling film propagation, for sensitivity analysis, and for data assimilation

are introduced in Section 2. The dynamic behaviour of falling films, importance

maps, optimised sensor locations, as well as comparison among different meth-85

ods of sensor placement, are discussed in Section 3. In Section 4, conclusions

are made and possible extension of this study is discussed.
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Figure 1: Schematic diagram of a falling liquid film flowing down an incline. h(x, t) and q(x, t)

are the local transient film thickness and the local transient flow rate, respectively.

2. Method

2.1. Numerical simulation of a falling film

A liquid film flowing down a plane is considered, as shown in Figure 1, the90

coordinate x is defined along the streamwise direction. The liquid is assumed to

be an incompressible Newtonian fluid with constant properties, such as surface

tension σ, viscosity µ, and density ρ. A model for the falling film in dimension-

less form is (Shkadov, 1967; Chang and Demekhin, 2002; Craster and Matar,

2009)95

∂h

∂t
+
∂q

∂x
= 0, (1)

∂q

∂t
+

6

5

∂

∂x

(
q2

h

)
=

1

5δ

(
h
∂3h

∂x3
+ h− q

h2

)
, (2)

where h and q are, respectively, the dimensionless local film thickness and the

dimensionless local flow rate, δ = (ρH11
c g4/σ)1/3/45ν2, and Hc is the film thick-

ness in the absence of waves. It uses a semiparabolic velocity profile and satisfies

the no-slip boundary condition at the wall and zero stress boundary condition100

at the gas-liquid interface. The boundary conditions at the inlet and at the
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outlet are

h = 1, q = 1 at x = 0, (3)

∂h

∂x
= 0,

∂q

∂x
= 0 at x = L, (4)

where L = 400 is the length of the domain used for the simulation. L is selected

to be long enough for the development of different types of waves. The initial105

condition of the falling film is obtained by propagating a uniform liquid film

(h = 1 and q = 1) until the waves in the domain are fully developed.

The falling film equations are discretised using the finite difference method.

The transient terms in the falling film equations are integrated using the third

order Runge-Kutta method (RK3) (Osher and Fedkiw, 2003). The convective110

terms are discretised using the total variation diminishing (TVD) scheme (Ver-

steeg and Malalasekera, 2007). The grid size is ∆x = 0.5 and the time step is

∆t = 0.005.

To introduce waves into the problem, noise is added to h at the inlet of the

domain to substitute the boundary condition for h in Eq. (3):115

h(t) = 1 + r(t) at x = 0, (5)

where r(t) is a random number uniformly distributed between −5 × 10−4 and

5× 10−4. Tests show that the amplitude of the white noise does not have a

significant effect on the overall behaviours of the waves because the noise with

resonant wave frequencies will grow exponentially, while other wave frequencies

will rapidly be damped.120

2.2. Ensemble method for sensitivity analysis

To analyse the sensitivity of the system, a target function F needs to be

defined first. The target function can be defined as a scalar considering any

variable in the system in the space-time domain, such as the film thickness, the

flow rate, the velocity, or the kinetic energy. It should include the information125

that the researcher is interested in. To quantitatively describe the propagation
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of information in the system and to identify the important regions in the space-

time domain that affect the target function F , here, the sensitivity is defined as

the dependence of the variation of the target function F on the variation of the

system state Ψ. In a discrete form, the system state Ψ is defined as a column130

vector containing all the variables for the falling film problem at all nodes, i.e.,

Ψ = (h(x1), h(x2), h(x3), ..., h(xN ), q(x1), q(x2), q(x3), ..., h(xN ))T , (6)

where N is the number of nodes used for the simulation, and the superscript T

indicates the transpose.

For the dynamic system of a falling film, when the controlling variables

deviate from mexact, the system states deviate from Ψexact, and correspondingly135

the target function deviates from Fexact. The deviation of the target function

F can be approximated using a first order Taylor series expansion:

∆F ≡ F − Fexact =
∂F

∂m
(m−mexact) ≡

∂F

∂m
∆m. (7)

Similarly, the deviation of the system state Ψ can be approximated as:

∆Ψ ≡ Ψ−Ψexact =
∂Ψ

∂m
(m−mexact) ≡

∂Ψ

∂m
∆m. (8)

If the system state deviates significantly from the true state Ψexact, the error

introduced by the Taylor series approximation in Eqs. (7–8) might be significant,140

especially for strongly nonlinear problems.

If we define

M ≡ ∂Ψ

∂m
, (9)

and invert Eq. (8):

∆m = M−1∆Ψ ≡ K∆Ψ, (10)

with K ≡M−1. Substituting Eq. (10) into Eq. (7) yields

∆F =
∂F

∂m
K∆Ψ ≡ g∆Ψ, (11)

with145

g ≡ ∂F

∂m
K. (12)
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Since g represents the variation of the target function F with the variation of

the system state Ψ (as in Eq. (11)), it is referred to as the sensitivity. A large

magnitude of sensitivity component gi indicates that a small change in Ψi will

result in a significant variation in F .

Solving Eq. (12) directly is impractical for complex multiphase problems,150

because the degree of the problem is the number of nodes times the number

of variables. The sensitivity, g, can be solved using an ensemble method (Che

et al., 2013). An ensemble can be generated by adding perturbations to the

system.

The ensemble counterpart of M is not square and does not possess regular155

inverse. By introducing the Moore-Penrose pseudoinverse (Moore, 1920) to

replace the direct inverse in Eq. (12)

K ≡ (M̂TM̂)−1M̂. (13)

Eq. (12) can be rewritten in an ensemble form

ĝ ≡ ∂̂F

∂ms
(M̂s

T
M̂s)

−1M̂s

T
, (14)

where
∂F

∂ms
≈ ∂̂F

∂ms
= (F 1 − F , F 2 − F , F 3 − F , ..., F E − F ), (15)

160

Ms =
∂Ψ

∂ms
≈ M̂s = (Ψ1 −Ψ, Ψ2 −Ψ, Ψ3 −Ψ, ... , ΨE −Ψ), (16)

in which E is the number of ensemble members in the sensitivity analysis. The

overbars indicate the ensemble average, and the hats indicate the ensemble

counterpart of the matrices.

2.3. EnKF method for data assimilation

Data assimilation was performed using the ensemble Kalman filter (EnKF)165

method (Evensen, 2003), and its implementation is described briefly here. In

the EnKF method, the ensemble is generated by perturbing the inlet boundary

condition. The true state of the system is assumed to be known as Ψtrue, and it
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is used to generate the pseudo experimental data and to validate the assimilation

results.170

The initial state of the ensemble is stored in matrix A as

A = (Ψ1,Ψ2,Ψ3, ...,ΨN ), (17)

where N is the number of ensemble members for data assimilation. The ensem-

ble mean Ā is defined as

Ā =
1

N

N∑
i=1

Ψi. (18)

Then the ensemble perturbation matrix is

A′ = A− Ā. (19)

The ensemble covariance matrix Pe is175

Pe =
A′(A′)T

N − 1
, (20)

which indicates the uncertainty of the initial condition.

A vector of measurements d can be perturbed to generate N vectors of

observations as

dj = d + εj , (21)

where j = 1, ..., N , and the observation vectors form the observation matrix D

D = (d1,d2,d3, ...,dN ). (22)

The perturbation matrix for observation γ is180

γ = (ε1, ε2, ε3, ..., εN ). (23)

Then the measurement error covariance matrix Re is

Re =
γ(γ)T

N − 1
. (24)

The data assimilation procedure minimises the estimated error of the system

states based on the initial data A, measurement data D, and their covariances

Pe and Re, respectively. The analysis equation is

Aa = A + PeH
T
(
HPeH

T + Re

)−1
(D−HA) , (25)
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where H is the measurement operator, which projects the system state from the185

model space into the observation space with measurement errors ε:

d = HΨ + ε. (26)

Eq. (25) allows us to update the system state not only at the point of mea-

surement, but also all the variable in the whole domain. It gives a Bayesian

estimation of the system state from the experimental data and the numerical

data. The details of the EnKF method can be found in Ref. (Evensen, 2003).190

After the data assimilation step, the analysis results Aa are optimised by min-

imising the covariances. Then the ensemble mean of Aa is used as the updated

system state with the uncertainty indicated by the covariance of Aa. The simu-

lation is continued until further experimental data become available for another

cycle of data assimilation.195

In the data assimilation of falling films, we used a dimensionless interval of

data assimilation of ∆t = 1.

3. Results and discussion

3.1. Chaotic behaviour of falling films

The initial profile of the falling film thickness in Figure 2a is used as the true200

state, and the corresponding profile at t = 50 is shown in Figure 2b. The time

evolution of h at three typical points, namely x = 50, x = 200, and x = 350, is

plotted in Figure 3, which indicates the chaotic feature of the falling film. At

x = 50, the wave amplitude is so small that it is almost invisible; at x = 200,

ripples are formed; and at x = 350, solitary waves are formed.205

3.2. Importance map

An importance map for the falling film problem was generated using the

method described in Section 2.2. The importance map is a plot of the sensitiv-

ity in the time-space domain. It can provide information about the domain of

dependence for the target function and about the propagation of information in210
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Figure 2: The true states of the film thickness htrue. (a) Initial true profile of the film thickness

at t = 0. (b) True profile of the film thickness at t = 50.

(a)

(b)

(c)

Figure 3: Time evolution of h at three points along the streamwise direction of the falling

film: (a) x = 50, (b) x = 200, (c) x = 350.
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Figure 4: Importance map g(x, t) for the falling film with the definition of the target function

for the solitary wave near the outlet of the domain in Figure 2b. (a) Sensitivity of the film

thickness h. (b) Sensitivity of the film flow rate q. The target function F is defined in Eqs.

(27)–(28) with µ = 0.9L and σ = 0.05L.

the time-space domain. The importance map depends on the target function.

Here the target function F is defined to capture the solitary wave in the down-

stream of the domain at t = 50, as shown in Figure 2b. A Gaussian function

G(x) is used to extract the wave from the whole curve,

G(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

, (27)

215

F =

∫ L

0

h(x)G(x)dx, (28)

where µ = 0.9L and σ = 0.05L. From the importance map, it can be seen that

information propagates from upstream to downstream with time.

3.3. Variation of variables

A measurement is useful only if the variation of the measured value at that

point ∆Ψ(x) is larger than the sensitivity of the sensors. Even if a small variation220

at one point may have significant influence on the target, there is no use in

allocating a sensor at that point if the sensor could not detect the variation.

Here the statistic variation of h and q are plotted in Figure 5 based on the
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Figure 5: Variation of the film thickness and the flow rate along the streamwise direction of

the falling film. (a) Variation of the local film thickness ςh defined in Eq. (29), (b) variation

of the local flow rate ςq defined in Eq. (30).

long-time running of the falling film model,

ςh =

√√√√ 1

nt

nt∑
j=1

(hj −Hc)
2
, (29)

225

ςq =

√√√√ 1

nt

nt∑
j=1

(qj −Qc)
2
, (30)

where hj and qj are the transient local film thickness and the transient local

flow rate, Hc = 1 and Qc = 1 are the film thickness and the flow rate without

any wave, j is the index for time step, and nt is the total number of time

steps considered, which should be sufficiently large so that ςh and ςq do not

significantly change when increasing nt.230

Since there is no variation in the upstream of the falling film, as shown in

Figure 5, there is no need to place any sensor in that region. In the downstream,

the variation is much larger than that in the upstream, therefore, the probability

of observing measurable perturbations to get measurable results is much higher.
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3.4. Other considerations235

In designing experiments, there may be other considerations of sensor place-

ment, e.g., the costs to measure a specific variable at a specific point. The

costs can be in terms of money or time. Researchers tend to obtain accurate

experimental results while keeping the costs low. A function c(x,Ψ) for the cost

of measurement at x for variable Ψ can be defined. Here, for simplicity, it is240

assumed the cost of measuring the local flow rate of the falling film q is much

larger than that of measuring the film thickness h, and the cost of measuring h

is the same at different points along the streamwise direction. Other types of

costs can be defined and analysed in a similar way.

The sensitivity, g(x,Ψ), as described in Section 3.2, the variation of the vari-245

ables, ς(x,Ψ), as described in Section 3.3, and the measurement cost, c(x,Ψ),

can be considered together by using a combined parameter,

χ(x,Ψ) =
|g(x,Ψ)|ς(x,Ψ)

c(x,Ψ)
. (31)

Then sensor optimisation can be performed simply by finding the area with

the largest magnitude of χ(x,Ψ). Since the sensitivity, g, varies with time,

the optimised sensor locations can be adapted correspondingly if sensors are250

allowed to move. If the strategy of adaptive sensors is challenging to implement

in experiments, sensors can be placed considering all time steps, which will

result in a strategy with optimised fixed sensors. These strategies are compared

in the next section.

3.5. Data assimilation results255

Experimental data are necessary to perform data assimilation. The ‘dual-

twin’ experiment is used to generate the synthetic experimental data (Bengtsson

et al., 1981): the synthetic experimental data were generated by adding random

numbers on the true values [Figure 2], and the random numbers has a Gaussian

distribution with a standard deviation depending on the accuracy of sensors.260

To form the ensemble for data assimilation using EnKF method, extra noise

of smaller covariance than the primary noise was added to the true values. The
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number of ensemble members N is 200 for data assimilation. For the ith member

of the ensemble,

hi(t) = 1 + r(t) + ri(t) at x = 0, (32)

where ri(t) is a random number uniformly distributed −10−4 < ri < 10−4. The265

film thicknesses of the ensemble members have a value close to unity at the

inlet, and the noise grows exponentially. As shown in Figure 6a, the ensemble

members are completely segregated at the downstream end of the falling film

(e.g., x > 200) due to the strong nonlinearity of the falling film problem and

the exponential growth of perturbations along the streamwise direction. The270

deviation of the ensemble from the true state can be quantified by

ζ(x) =

√√√√ 1

N

N∑
i=1

(hi(x)− htrue(x))
2
. (33)

The distribution of ζ for the ensemble at the initial state is plotted in Figure

6b.

Three strategies of sensor placement are considered, which are, respectively:

(1) uniformly distributed sensors in the whole domain, (2) optimised fixed sen-275

sors, and (3) optimised adaptive sensors. Data assimilation is performed using

synthetic experimental results based on the three strategies of sensor placement,

and the results are compared to those without experimental data for data assim-

ilation, as shown in Figure 7. The comparison shows that the ensemble without

data assimilation, due to the strong nonlinearity of the falling film problem, has280

a very large variance in most of the domain except near the inlet, as shown in

Figure 7a. The relatively small variance in the upstream is due to the small per-

turbation, and the large variation in the downstream is due to the exponential

growth of the perturbation. The large variation indicates a large uncertainty of

the numerical simulation.285

The simulation with uniformly distributed sensors can improve the simula-

tion results in the whole domain [Figure 7b], but the improvement in the region

defined for the target function x = 0.9L = 360 is less than the one with the

optimised fixed sensors, as shown in Figure 7c. In addition, if one were to con-
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Figure 6: (a) Ensemble used for data assimilation (black) and the corresponding true state

(red) at t = 0. (b) The deviation of the ensemble from the true state defined in Eq. (33).

sider the whole domain, the result with optimised adaptive sensors does not look290

better than that with optimised fixed sensors. However, if one were to compare

the results in the region for the solitary wave x = 0.9L = 360, the result with

optimised adaptive sensors shows significant improvement in comparison with

optimised fixed sensors, as shown in Figure 7d. The ensemble with optimised

adaptive sensors can provide the smallest variance in the region defined for the295

target function, which indicates a small uncertainty of the simulation. The pro-

file of the solitary wave has been well recovered. However, the adaptive sensing

strategy requires that the sensors change their locations with time, which might

prove to be difficult to achieve for some experiments. The variance in the cen-

tral region of the domain is larger than that of uniform sensor locations. This300

is because all the measurements have been allocated to capture the information

of the defined target and there is no measurement to capture the overall profile

of the falling film. When researchers are interested in the overall profile of the

falling film, the target function should be defined across the whole domain.
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Figure 7: Results of data assimilation with different methods of sensor placement. (a) No

experimental data for data assimilation, (b) uniformly distributed sensors in the whole domain,

(c) optimised fixed sensors, and (d) optimised adaptive sensors. The figures on the left show

the profiles of the ensemble (black) and the true state (red), while the figures on the right

show the standard deviations from the true states defined in Eq. (33). Eight sensors are used.

In (b)-(c), the symbols ‘o’ along the horizontal axes indicate the location of the sensors. In

(d), the symbols ‘o’ indicate the initial location of the adaptive sensors at t = 0, while the

symbols ‘*’ indicate the finial location of the adaptive sensors at t = 50. 340 < x < 380 is

shaded to highlight the region for the target function defined in Eqs. (27)–(28) with µ = 0.9L

and σ = 0.05L.
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3.6. How many sensors are necessary?305

In experiments, researchers are not only interested in optimal sensor loca-

tions but also in how many sensors are necessary. The number of sensors should

be kept low to reduce the costs in installation and maintenance. Here, the effect

of number of sensors for the falling film problem is studied by increasing the

number of sensors from 1 to 20. The target function is the same as that defined310

in Section 3.5. Three strategies to place sensors are considered and compared:

uniformly distributed sensors in the whole domain, optimised fixed sensors, and

optimised adaptive sensors. Data assimilations are performed based on these

sensor placement strategies and the results are compared with those obtained

without experimental data for assimilation. For a specific application, the re-315

quired number of sensors depends on the required accuracy. A higher accuracy

requires more measurements, and vice versa. For a specific sensor placement

strategy, more sensors mean more experimental information can be collected.

Therefore, with increasing the number of sensors, the uncertainty of the simula-

tion can be reduced. The improvement becomes insignificant when the number320

of sensors exceeds a certain value, e.g. 10 optimised adaptive sensors or 15

optimised fixed sensors for the experiments, as shown in Figure 8. Further im-

provement must be made by other methods, such as using alternative sensors

with higher precision.

3.7. A target function for ripples325

The optimised sensor locations of measurement are different for different

target functions. To capture the ripples in the upstream of the solitary waves,

a target function is defined using Eqs. (27)–(28) with µ = 0.5L and σ = 0.05L.

The corresponding importance map is generated, as shown in Figure 9. The

importance map shows that the target function for the ripples is mainly sensitive330

to the region 0 < x < 200. However, as shown in Figure 5, the variation of

variables near the inlet is too small to be detected. Therefore, the variation must

be considered in sensor placement. Even the upstream has a high sensitivity

regarding the target function, the inlet region should be avoided because any
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Figure 8: Deviation of the target function of the ensemble from the true target function,√
1
N

∑N
i=1 (Fi − Ftrue)2, for data assimilation with different numbers of sensors. Due to

the statistical nature of the method, the data assimilation processes were repeated 30 times

and the standard deviations are also plotted. The results are improved by increasing the

number of sensors. The comparison between the different methods of sensor placement shows

the improvement over uniformly distributed sensors. It also shows that the adaptive sensors

perform better than the fixed optimised sensors.
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Figure 9: Importance map g(x, t) for the falling film with the definition of the target function

for the ripples in Figure 2b. (a) Sensitivity of film thickness h. (b) Sensitivity of film flow

rate q. The target function F is defined as Eqs. (27)–(28) with µ = 0.5L and σ = 0.05L.

measurement in that region could not detect useful information of the falling335

film. The results of data assimilation with and without considering the variation

are shown in Figure 10. The result without considering the variation is obtained

by replacing Eq. (31) with χ(x,Ψ) = |g(x,Ψ)|
c(x,Ψ) . The comparison confirms that

the result can be improved when the variation of variables is considered.

4. Conclusions340

In this paper, an ensemble method is, for the first time, presented to study

the sensitivity of a falling film problem, and the sensitivity is used to optimise

the sensor locations. In addition, the new target based sensor placement method

is applied with the target of re-producing the film thickness in a region of the

domain. The data assimilation study showed that assimilating data from op-345

timised sensor locations can significantly reduce model uncertainty and more

accurately reproduce the true system. The data assimilation study also showed

that the required number of sensors can be significantly reduced by using opti-

mised sensors.

The sensitivity analysis can identify important parameters and important350

regions which depend on the target function. The importance map can show

the sensitivity of different parameters in the time-space domain. It is not only
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Figure 10: Results of data assimilation for a target function of ripples. The target function F

is defined as Eqs. (27)–(28) with µ = 0.5L and σ = 0.05L. (a) Optimised fixed sensors without

considering the variation of variables, i.e., replacing Eq. (31) with χ(x,Ψ) =
|g(x,Ψ)|
c(x,Ψ)

. The

deviation from the true target function is 1.36. (b) Optimised fixed sensors with considering

the variation of variables. The deviation from the true target function is 1.16. The figures on

the left show the profiles of the ensemble (black) and the true state (red), while the figures on

the right show the standard deviation from the true states defined in Eq. (33). Four sensors

are used. The symbols ‘o’ along the horizontal axes indicate the location of the sensors.

180 < x < 220 is shaded to highlight the region for the target function. The comparison of

sensor locations with that in Figure 7 shows the dependency of the sensor location on the

target function.
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the importance map to be considered to optimised sensor locations, but also

the variation of variables and the costs of performing the measurement at d-

ifferent locations. Through the sensitivity analysis, sensor optimisation, and355

data assimilation, this paper provides a systematic linkage between the experi-

ments and the models for falling film problems. This method can be extended

to different complex multiphase problems. Through sensitivity studies, the lim-

ited resources in experiments and simulations can be focused on regions of high

importance to improve the analysis of complex multiphase problems.360
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