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ABSTRACT

The modeling of multiphase flow in a pipe presents a significant challenge for high-resolution computational fluid dynamics (CFD) models due
to the high aspect ratio (length over diameter) of the domain. In subsea applications, the pipe length can be several hundreds of meters vs a pipe
diameter of just a few inches. Approximating CFD models in a low-dimensional space, reduced-order models have been shown to produce accu-
rate results with a speed-up of orders of magnitude. In this paper, we present a new AI-based non-intrusive reduced-order model within a
domain decomposition framework (AI-DDNIROM), which is capable of making predictions for domains significantly larger than the domain
used in training. This is achieved by (i) using a domain decomposition approach; (ii) using dimensionality reduction to obtain a low-
dimensional space in which to approximate the CFD model; (iii) training a neural network to make predictions for a single subdomain; and
(iv) using an iteration-by-subdomain technique to converge the solution over the whole domain. To find the low-dimensional space, we
compare Proper Orthogonal Decomposition with several types of autoencoder networks, known for their ability to compress information
accurately and compactly. The comparison is assessed with two advection-dominated problems: flow past a cylinder and slug flow in a pipe. To
make predictions in time, we exploit an adversarial network, which aims to learn the distribution of the training data, in addition to learning the
mapping between particular inputs and outputs. This type of network has shown the potential to produce visually realistic outputs. The whole
framework is applied to multiphase slug flow in a horizontal pipe for which an AI-DDNIROM is trained on high-fidelity CFD simulations of a
pipe of length 10m with an aspect ratio of 13:1 and tested by simulating the flow for a pipe of length 98m with an aspect ratio of almost 130:1.
Inspection of the predicted liquid volume fractions shows a good match with the high fidelity model as shown in the results. Statistics of the flows
obtained from the CFD simulations are compared to those of the AI-DDNIROM predictions to demonstrate the accuracy of our approach.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088070

I. INTRODUCTION

Non-intrusive reduced-order modeling (NIROM) has been the
subject of intense research activity over the last five years, largely due
to the advances made in machine learning and the re-application of
these techniques to reduced-order modeling. This paper takes a step

toward demonstrating how non-intrusive reduced-order models can
generalize by training the model on one domain and deploying it on a
much larger domain. The method outlined here could be extremely
useful for the energy industry, for example, in which pipelines of the
order of kilometers in lengths and inches in diameter are used for the
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subsea transportation of fluids. With such high aspect ratios, these
pipes are too long to be modeled by high-resolution computational
fluid dynamics (CFD) models alone. In this paper, we propose a non-
intrusive reduced-order model based on autoencoders (for dimension-
ality reduction), an adversarial network (for prediction), and a domain
decomposition approach. For dimensionality reduction, we investigate
the performance of several autoencoders and Proper Orthogonal
Decomposition (POD) using two test cases (flow past a cylinder and
multiphase slug flow in a horizontal pipe). With the method that per-
forms best (the convolutional autoencoder), we go on to demonstrate
the NIROM approach on multiphase slug flow in a horizontal pipe,
training the networks on CFD data from a 10m pipe with an aspect
ratio of 13:1 and making predictions for the flow within a 98m pipe
with an aspect ratio of almost 130:1. In the following paragraphs, we
give some background on reduced-order modeling (ROM) and
NIROM; on dimensionality reduction methods and the use of autoen-
coders; on prediction; domain decomposition methods and ROM; and
finally on multiphase flow. The final two paragraphs summarize the
main contributions of the paper and describe the layout of the rest of
the paper.

The aim of reduced-order modeling1 (ROM) is to obtain a low-
dimensional approximation of a computationally expensive high-
dimensional system of discretized equations, henceforth referred to as
the high-fidelity model (HFM). To be of benefit, the low-dimensional
model should be accurate enough for its intended purpose and orders
of magnitude faster to solve than the HFM. Known as projection-
based ROM,2 one common strategy for constructing reduced-order
models is to use a Galerkin projection of the HFM onto a low-
dimensional subspace. However, in this article we focus on an alterna-
tive method, NIROM, which, unlike projection-based ROM, does not
require access to or modification of the source code of the HFM. It
requires only the results of the HFM with which it constructs a low-
dimensional approximation to the HFM in two stages: the offline stage
and the online stage. During the offline stage, solutions from the HFM
are generated (known as snapshots); a set of basis functions that span
the low-dimensional or reduced space are obtained by a dimensional-
ity reduction method; and finally, the evolution of the HFM in the
reduced space is approximated in some manner. The latter step can
be done in several ways, but here, as we focus on AI-based NIROM, we
use a neural network. A profusion of terms exists for this type of non-
intrusive modeling, including POD with interpolation;3 NIROM;4,5

POD surrogate modeling;5,6 system or model identification;7,8 Galerkin-
free;9 data-driven reduced-order modeling;10–12 Deep Learning ROM;13

and digital twins.14–17 In addition to making predictions, digital twins
assimilate data from observations to improve the accuracy of the
prediction.

To find the low-dimensional subspace in which to approximate
the HFM, many of these non-intrusive approaches rely on Proper
Orthogonal Decomposition (POD),18 which is based on Singular
Value Decomposition. Also known as Principal Component Analysis,
POD finds the optimal linear subspace (with a given dimension) that
can represent the space spanned by the snapshots and prioritizes the
modes according to those that exhibit the most variance. Whilst POD
works well in many situations, for advection-dominated flows with
their slow decay of singular values or large Kolmogorov N–width,19

approximations based on POD can be poor20–22 and researchers are
turning increasingly to autoencoders.23 Although adding to the offline

cost, these networks seek a low-dimensional nonlinear subspace,
which can be more accurate and efficient than a linear subspace for
approximating the HFM.

Convolutional networks are particularly good at analyzing and
classifying images (on structured grids)24,25 with the ability to pick out
features and patterns wherever their location (translational invari-
ance), and these methods are applicable directly to the dimensionality
reduction of CFD solutions on structured grids through the use of
convolutional autoencoders (CAEs). Methods that apply convolutional
networks to data on unstructured meshes do exist (based on space-
filling curves;26 graph convolutional networks;27,28 and a method that
introduces spatially varying kernels29) but are in their infancy, so most
researchers either solve the high-resolution problem on structured
grids directly or interpolate from the high-fidelity model snapshots to
a structured grid before applying the convolutional layers. The latter
approach is adopted here.

Perhaps the first use of an autoencoder for dimensionality reduc-
tion within a ROM framework was applied to reconstruct flow fields
in the near-wall region of channel flow based on information at the
wall,30 whilst the first use of a convolutional autoencoder came
16 years later and was applied to Burgers Equation, advecting vortices
and lid-driven cavity flow.31 In the few years since 2018, many papers
have appeared, in which convolutional autoencoders have been
applied to sloshing waves, colliding bodies of fluid and smoke convec-
tion;32 flow past a cylinder;33–35 the Sod shock test and transient wake
of a ship;36 air pollution in an urban environment;37–39 parametrized
time-dependent problems;40 natural convection problems in porous
media;41 the inviscid shallow water equations;42 supercritical flow
around an airfoil;43 cardiac electrophysiology;44 multiphase flow
examples;45 the Kuramoto–Sivashinsky equation;46 the parametrized
2D heat equation;47 and a collapsing water column.48 Of these papers,
those which compare autoencoder networks with POD generally con-
clude that autoencoders can outperform POD,31,33 especially when
small numbers of reduced variables are used.41–44 However, when
large enough numbers of POD basis functions are retained, POD
can yield good results, sometimes outperforming the autoencoders.

A recent dimensionality reduction method that combines
POD/SVD and an autoencoder (SVD-AE) has been introduced
independently by a number of researchers and demonstrated on:
vortex-induced vibrations of a flexible offshore riser at a high
Reynolds number49 (described as hybrid ROM); the generalized eigen-
value problems associated with neutron diffusion50 (described as an
SVD autoencoder); Marsigli flow51 (described as nonlinear POD); and
cardiac electrophysiology52 (described as POD-enhanced deep learn-
ing ROM). This method has at least three advantages: (i) by training
the autoencoder with POD coefficients, it is of no consequence
whether the snapshots are associated with a structured or unstructured
mesh; (ii) an initial reduction of the number of variables by applying
POD means that the autoencoder will have fewer trainable parameters
and therefore be easier to train; and (iii) autoencoders in general can
find the minimum number of latent variables needed in the reduced
representation. For example, the solution of flow past a cylinder
evolves on a one-dimensional manifold parametrized by time; there-
fore, only one latent variable is needed to capture the physics of this
solution.26,42,44

The Adversarial Autoencoder53 (AAE) is a generative autoen-
coder sharing similarities with the variational autoencoder (VAE) and
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the generative adversarial network (GAN). In addition to an encoder
and decoder, the AAE has a discriminator network linked to its bottle-
neck layer. The purpose of the discriminator and associated adversarial
training is to make the posterior distribution of the latent representa-
tion close to an arbitrary prior distribution thereby reducing the likeli-
hood that the latent space will have “gaps.” Therefore, any set of latent
variables should be associated, through the decoder, with a visually
realistic output. Not many examples exist of using an AAE for dimen-
sionality reduction in fluid dynamics problems; however, it has been
applied to model air pollution in an urban environment.38,39 In this
work, we compare POD, CAE, AAE, and the SVD-AE on flow past a
cylinder and multiphase flow in a pipe, to assess their suitability as
dimension reduction methods.

Once the low-dimensional space has been found, the snapshots
are projected onto this space, and the resulting reduced variables
(either POD coefficients or latent variables of an autoencoder) can
be used to train a neural network, which attempts to learn the evolu-
tion of the reduced variables in time (and/or their dependence on a
set of parameters). From the references in this paper alone, many
examples exist of feed-forward and recurrent neural networks having
been used for the purpose of learning the evolution of time series data,
for example, by Multi-layer perceptrons,12,13,40,41,43,54–60 Gaussian
Process Regression,11,45,61–63 and Long-Short Term Memory net-
works.31,32,34,35,38,51,64 When using these types of neural networks to
predict in time, if the reduced variables stray outside of the range of
values encountered during training, the neural network can produce
unphysical, divergent results.39,51,52,64,65 To combat this, a number of
methods have been proposed. Physics-informed neural networks55 aim
to constrain the predictions of the neural network to satisfy physical
laws, such as conservation of mass or momentum.59,60 A method intro-
duced by Refs. 56 and 57 aims to learn the mapping from the reduced
variables at a particular time level to their time derivative, rather than
the reduced values themselves at a future time level. This enables the
use of variable time steps when needed, to control the accuracy of the
solution in time. A third way of tackling this issue, which is explored in
this paper, is to use adversarial networks, renowned for their ability to
give realistic predictions.

Adversarial networks, such as the GAN and the AAE, aim to
learn a distribution to which the training data could belong, in addi-
tion to a mapping between solutions at successive time levels. GANs
and AAEs are similar in that they both use a discriminator network
and deploy adversarial training, and both require some modification
so that they can make predictions in time. The aim of these networks
is to generate images (or in this case, reduced variables associated with
fluid flows) that are as realistic as possible. To date, there are not many
examples of the use of GANs or AAEs for prediction in CFD model-
ing. Two exceptions are Ref. 66, which combines a VAE and GAN to
model flow past a cylinder and the collapse of a water dam and
Ref. 67, which uses a GAN to predict the reduced variables of an epi-
demiological model which modeled the spread of a virus through a
small, idealized town. This particular model performed well when
compared with an LSTM.68 Conditional GANs (CGAN) have similar
properties to the GAN and AAE, and they have been used successfully
to model forward and inverse problems for coupled hydro-mechanical
processes in heterogeneous porous media;69 a flooding event in
Hokkaido, Japan, after the 1993 earthquake;70 and a flooding event in
Denmark.71 However, the closeness of the CGAN’s distribution to that

of the training data is compromised by the “condition” or constraint.
GANs are known to be difficult to train, so, in this paper, we use an
Adversarial Autoencoder, albeit modified, so that it can predict the
evolution of the reduced variables in time.

Combining domain decomposition techniques with ROM has
been done by a number of researchers. An early example72 presents a
method for projection-based ROMs in which the POD basis functions
are restricted to the nodes of each subdomain of the partitioned
domain. A similar approach has also been developed for non-intrusive
ROMs,61 which was later extended to partition the domain by mini-
mizing communication between subdomains,62 effectively isolating as
much as possible, the physical complexities between subdomains. As
the domain of our main test case (multiphase flow in a pipe) is long
and thin with a similar amount of resolution and complexity of behav-
ior occurring in partitions of equal length in the axial direction, here,
we simply split the domain into subdomains of equal length in the
axial direction (see Fig. 1). The neural network learns how to predict
the solution for a given subdomain, and the solution throughout the
entire pipe is built up by using the iteration-by-subdomain approach.73

The domain decomposition approach we use has some similarities to
the method employed in Ref. 74, which decomposes a domain into
patches to make training a neural network more tractable. However,
our motivation for using domain decomposition is to make predic-
tions for domains that are significantly larger than those used in the
training process. When modeling a pipe that is longer than the pipe
used to generate the training data, it is likely that the simulation
will need to be run for longer than the original model as the fluid will
take longer to reach the end of the pipe. This means that boundary
conditions for the longer pipe must be generated somehow, rather
than relying on using boundary conditions from the original model.
Generating suitable boundary conditions for turbulent CFD problems
is, in general, an open area of research. Often used are incoming
synthetic-eddy methods,75 which attempt to match specified mean
flows and Reynolds stresses at the inlet. Recently, researchers have
explored using GANs to generate boundary conditions with suc-
cess.76,77 We present three methods of generating boundary conditions
for our particular application and also discuss alternative methods in
Conclusions and Further Work.

The test case of multiphase flow in a pipe is particularly challeng-
ing due to the difficulties such as the space-time evolution of multi-
phase flow patterns (stratified, bubbly, slug, annular), the turbulent
phase-to-phase interactions, the drag, inertia, and wake effects that
arise for the HFM from the high aspect ratio (length to diameter) of
the domain of a typical pipe. Many address this by developing one
dimensional (flow regime-dependent or -independent) models for
long pipes.78–80 Nevertheless, such models contain some uncertainties
as they rely on several closure or empirical expressions81 under the
limited experimental data82 in describing, for example, the 3D space-
time variations of interfacial frictional forces with phase distributions
(the bubble/drop entrainment, the bubble-induced turbulence, and the
phase interfacial interactions), depending on the flow pattern, flow

FIG. 1. A schematic diagram of a pipe split into eight subdomains of equal length in
the axial direction.
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direction, and pipe physical properties (inclination, diameter, and
length). Significant progress has been made in 3D modeling83 by using
direct numerical simulations84 (DNS) and front-tracking methods.85

To generate the solutions of the HFM, we employ a method based on
Large Eddy Simulation, which advects a volume fraction field86 and
uses mesh adaptivity to have high resolution where most needed.
Although compromising on resolving features on the smaller temporal
and spatial scales, this approach is computationally more feasible than
DNS and has the advantage of being conservative, unlike front-
tracking methods.

In this paper, we propose a non-intrusive reduced-order model
(AI-DDNIROM) capable of making predictions for a domain to which
it has not been exposed during training. Several autoencoders are
explored for the dimensionality reduction stage, as there is evidence
that they are more efficient than POD for advection-dominated prob-
lems such as those tackled here. The dimensionality reduction meth-
ods are applied to 2D flow past a cylinder and 3D multiphase slug
flow in a horizontal pipe. For the prediction stage, an adversarial net-
work is chosen (based on a modified adversarial autoencoder) as these
types of networks are believed to generate latent spaces with no gaps53

and thus are likely to produce more realistic results than feed-forward
or recurrent neural networks without adversarial layers. A domain
decomposition approach is applied, which, with an iteration-by-
subdomain technique, enables predictions to be made for multiphase
slug flow with a significantly longer pipe than was used when training
the networks. The predictions of the adversarial network are taken
from a probability distribution learned during training. Any point
within the Gaussian distribution of the latent variables should there-
fore result in a realistic solution. Statistics from the HFM solutions and
predictions of the non-intrusive reduced-order models for the original
length pipe and the longer pipe are compared. The contributions of
this work are: (i) a method, which can make predictions for a domain
significantly larger than that used to train the reduced-order models;
(ii) the exploitation of an adversarial network to make realistic pre-
dictions, and comparing statistics of the reduced-order models with
the original CFD model; and (iii) the investigation of a number of
methods to generate boundary conditions for the larger domain.

The outline of the remainder of the paper is as follows. Section II
describes the methods used in constructing the reduced-order models
and the domain decomposition approach, which is exploited in order
to be able to make predictions for a longer domain than that used in
training. Section III presents the results for the dimensionality reduc-
tion methods applied to flow past a cylinder and multiphase flow in a
pipe and then shows the predictions of the reduced-order model of
multiphase flow in a pipe, for both the original domain and the
extended domain. Conclusions are drawn, and future work described
in the final section. Details of the hyperparameter optimization process
and the network architectures are given in the Appendix.

II. METHODOLOGY
A. Non-intrusive reduced-order models

The offline stage of a non-intrusive reduced-order model can be
split into three steps: (i) generating the snapshots by solving a set of
discretized governing equations (the high-resolution or high-fidelity
model); (ii) reducing the dimensionality of the discretized system;
and (iii) teaching a neural network to predict the evolution of the
snapshots in reduced space. The online stage consists of two steps: (i)

predicting values of the reduced variables with the neural network for
an unseen state and (ii) mapping back to the physical space of the
high-resolution model. In this section, the methods used in this
investigation for dimensionality reduction (Sec. II B) and prediction
(Sec. IIC) are described. The final section (Sec. IID) outlines an
approach for making predictions for a larger domain having used a
smaller domain to generate the training data.

B. Dimensionality reduction methods

Described here are four techniques for dimensionality reduction,
which are used in this investigation, namely Proper Orthogonal
Decomposition, a convolutional autoencoder, an adversarial autoen-
coder, and a hybrid SVD autoencoder.

1. Proper orthogonal decomposition

Proper Orthogonal Decomposition is a commonly used tech-
nique for dimensionality reduction when constructing reduced-order
models. POD requires the minimization of the reconstruction error of
the projection of a set of solutions (snapshots) onto a number of basis
functions, which define a low-dimensional space. In order to minimize
the reconstruction error, the basis functions must be chosen as the left
singular vectors of the singular value decomposition (SVD) of the
matrix of snapshots. Suppose the snapshots matrix is represented by S,
whose columns are solutions at different instances in time (i.e., the
snapshots) and whose rows correspond to nodal values of solution
variables, then S can be decomposed as

S ¼ URVT ; (1)

where the matrix U contains the left singular vectors, V the right sin-
gular vectors, and R contains the singular values on its diagonal, zeros
elsewhere. If POD is well suited to the problem, many of the singular
values will be close to zero and the corresponding columns of U can be
discarded. The POD basis functions to be retained are stored in a
matrix denoted by R. The POD coefficients of a snapshot can be found
by pre-multiplying the snapshot by RT , and the reconstruction of a
snapshot can be found by pre-multiplying the POD coefficients of the
snapshot by R:

ðureconÞk ¼ RRTuk; (2)

where uk is the kth snapshot and ðureconÞk is its reconstruction. Hence,
the reconstruction error over a set of N snapshots fu1; u2;…; uNg can
be written as

1
N

XN
k¼1

uk � ðureconÞk
� �

� uk � ðureconÞk
� �

: (3)

Often the mean is subtracted from the snapshots before applying sin-
gular value decomposition; however, in this study, doing so was found
to have little effect. In the first test case, 2D flow past a cylinder, two
velocity components are included in the snapshot matrix,

uk ¼ ðuk1; uk2;…; ukM ; v
k
1; v

k
2;…; vkMÞ

T ; (4)

where ui and vi represent the x and y components of velocity, respec-
tively, at the ith node; k denotes a particular snapshot; and M is the
number of nodes. For the 3D multiphase flow test case, the snapshots
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comprise velocities and volume fractions, so a single snapshot has the
form

uk ¼ ðuk1; uk2;…; ukM ; v
k
1; v

k
2;…; vkM ;w

k
1;w

k
2;…;wk

M ; a
k
1; a

k
2;…; akMÞ

T ;

(5)

where wk
i and aki represent the z component of velocity and the vol-

ume fraction, respectively, at the ith node of the kth snapshot. In this
case, the velocity components are scaled to be in the range ½�1; 1� so
that their magnitudes are similar to those of the volume fractions.

2. Convolutional autoencoder

An autoencoder is a particular type of feed-forward network that
attempts to learn the identity map.87 When used for compression,
these networks have a central or bottleneck layer that has fewer neu-
rons than the input and output layers, thereby forcing the autoencoder
to learn a compressed representation of the training data. An autoen-
coder consists of an encoder, which compresses the data to the latent
variables of the bottleneck layer, and a decoder, which decompresses
or reconstructs the latent variables to an output layer of the same
dimension as the input layer. The latent variables span what is referred
to as the latent space. The convolutional autoencoder typically uses a
series of two types of layers to compress the input data in the encoder:
convolutional layers and pooling layers. These layers both apply opera-
tions to an input grid resulting in an output grid (or feature map) of
reduced size. The inverse operations are then used in succession in a
decoder, resulting in a reconstructed grid of the same shape as the
input. The encoder-decoder pair can be trained as any other neural
network: by passing training data through the network and updating
the weights associated with the layers according to a loss function such
as the mean square error. If uk represents the kth sample in the dataset
of N samples and ðureconÞk represents the corresponding output of the
autoencoder, which can be written as

ðureconÞk ¼ f aeðukÞ; (6)

then the mean square error can be expressed as in Eq. (3).

3. Adversarial autoencoder

The adversarial autoencoder53 is a recently developed neural net-
work that uses an adversarial strategy to force the latent space to follow
a (given) prior distribution (Pprior). Its encoder-decoder network is the
same as that of a standard autoencoder; however, in addition, the
adversarial autoencoder includes a discriminator network, which is
trained to distinguish between true samples (from the prior) and fake
samples (from the latent space). There are therefore three separate
training steps per mini-batch. In the first step, the reconstruction error
of the inputs is minimized (as is done in a standard autoencoder). In
the second and third steps, the adversarial training takes place. In the
second step, the discriminator network is trained on latent variables
sampled from the prior distribution with label 1 and latent variables
generated by the encoder with label 0. In the third step, the encoder
is trained to fool the discriminator, that is, it tries to make the discrimi-
nator produce an output of 1 from its generated latent vectors. Note
that this is the role of the generator in a GAN and, as such, the encoder
(G) and discriminator (D) play the minimax game described by Eq. (7).
This equation is the implicit loss function for the adversarial training:

min
G

max
D

VðD;GÞ ¼ Ez�Pprior logDðzÞ½ �

þEu�Pdata log ð1� DðGðuÞÞÞ½ �; (7)

where V is the value function that G and D play the minimax game
over, z � Pprior is a sample from the desired distribution, and u � Pdata
is a sample input grid. There are strong similarities between the adver-
sarial autoencoder, GANs and Variational Autoencoders (VAEs). All
three types of networks set out to obtain better generalization than
non-adversarial networks by attempting to obtain a smooth latent
space with no gaps. Results in Ref. 53 show that the AAE performs
better at this task than the VAE on the MNIST digits. Imposing a
prior distribution upon the variables of the latent space ensures that
any set of latent variables, when passed through the decoder, should
have a realistic output.53

4. SVD autoencoder

As the name suggests, the SVD autoencoder makes use of two
strategies. Initially, an SVD is applied to the data, resulting in POD
coefficients that are subsequently used to train an autoencoder, which
applies a second level of compression. Once trained, the latent varia-
bles of the SVD autoencoder can be written as

zk ¼ f enc Rukð Þ; (8)

where f enc is the encoder, R represents the POD basis functions, uk is
the kth snapshot, and zk are the latent variables. For reconstruction,
the inverse of this process is then employed, whereby a trained decoder
first decompresses the latent space variables to POD coefficients, after
which these POD coefficients are reconstructed to the original space of
the high-fidelity model. The reconstruction can be written as

ðureconÞk ¼ RT f dec f enc Rukð Þ
� �

� RT f ae Rukð Þ; (9)

where f dec is the decoder, f ae is the autoencoder, and ðureconÞk is the
reconstruction of the kth snapshot. This network could be approxi-
mated by adding to the autoencoder a linear layer after the input and
before the output, and dispensing with the SVD, however, it has been
found that this network is harder to train. Here, we take advantage of
the efficiency of the SVD and use this in conjunction with an
autoencoder.

C. Prediction methods

In this study, when predicting, we wish to approximate a set of
reduced variables (either POD coefficients or latent variables of an
autoencoder) at a future time step. The adversarial autoencoder is re-
purposed for this task in an attempt to capitalize on the fact that this
network should produce realistic results (providing that the training
dataset is representative of the behavior that will be modeled). So that
it can predict time series data, three modifications are made to the
original adversarial autoencoder network:53 namely that (i) the bottle-
neck layer no longer has fewer variables than the input (to prevent fur-
ther compression); (ii) the output is the network’s approximation of
the reduced variables at a future time level; and (iii) the input is the
reduced variables at the preceding time level as well as the reduced
variables of the neighboring subdomains at the future time (as we
adopt a domain decomposition approach, which is described in the
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next paragraph). The modified adversarial autoencoder is trained by
minimizing the error between its output and the predicted variables at
the future time level, as well as incorporating the adversarial training
strategy described in Sec. II B 3. To avoid confusion, we refer to this
network as a predictive adversarial network, because, with different
inputs and outputs, it is no longer an autoencoder.

In this study, we adopt a domain decomposition approach to
facilitate predicting the solution for larger domains than that used in
training (see Sec. II D). Given the aspect ratio of the pipe, we split the
domain into subdomains of equal length in the axial direction, see
Fig. 1. To train the predictive adversarial network, reduced variables
are obtained by interpolating the high-fidelity solutions or snapshots
onto a structured grid in each subdomain in turn and compressing the
interpolated snapshots from all the subdomains using POD or an
autoencoder. The interpolation is linear and achieved by using the
finite element basis functions. The predictive adversarial network is
taught to predict the reduced variables in a particular subdomain at a
future time level given the reduced variables in the neighboring sub-
domains at the future time level and the reduced variables in the sub-
domain at the preceding time level. Using training data for all the
subdomains and those time levels that are in the training dataset, the
predictive adversarial network learns the mapping f, written as

zki ¼ f ðzki�1; zk�1i ; zkiþ1Þ ; 8i (10)

where zki represents the reduced variables in subdomain i at the future
time level k; zk�1i represents the same but at the preceding time level;
and zki�1 and zkiþ1 denote the reduced variables at the future time level
for the subdomains to the left and right of subdomain i. When predict-
ing for one time level, all subdomains are iterated over (the iteration-
by-subdomain method) until convergence is reached over the whole
domain. This is done by sweeping from left to right (increasing i) and
then sweeping from right to left (decreasing i). During the iteration
process, zki of Eq. (10) is being continually updated. As we consider
incompressible flows in this study, the solution method has to be
implicit in order to allow information to travel throughout the domain
within one time level. This sweeping from left to right and back again
allows information to pass from the leftmost to the rightmost subdo-
mains and vice versa.

For each new time level, an initial solution is required to start the
iteration process [for zki�1 and zkiþ1 in Eq. (10)]. The solution at the
previous, converged time level could be used (zki61 ¼ zk�1i61 ); however,
using linear extrapolation based on two previous time levels showed
better convergence

zki ¼ zk�1i þ ðzk�1i � zk�2i Þ: (11)

The procedure for sweeping over the subdomains is given in
Algorithm 1, in which f represents the predictive adversarial network,
N time is the number of time levels, Nsweep is the number of sweeps car-
ried out over the whole domain, and Nsub is the total number of sub-
domains. Two of these subdomains are treated as boundary
conditions and are fully imposed throughout the duration of the pre-
diction, so at line 18 of Algorithm I, only the subdomains where a
solution is sought are iterated over. In this study, a fixed number of
sweep iterations were used as this gave good results; however, a con-
vergence criterion could be easily implemented if desired.

ALGORITHM 1 An algorithm for finding the solution for the reduced
variables in a subdomain and sweeping over all the subdomains to
obtain a converged solution over the whole domain.

1: !! set initial conditions for each subdomain i
2: z0i 8i
3: for time level k ¼ 1; 2;…;N time do
4: !! set boundary conditions
5: zk1; zkNsub

6: !! estimate the solution at the future time level k for all the
subdomains

7: if k> 1 then
8: for subdomain i ¼ 2; 3;…;Nsub � 1 do
9: zki ¼ zk�1i þ ðzk�1i � zk�2i Þ
10: end for
11: else
12: for subdomain i ¼ 2; 3;…;Nsub � 1 do
13: zki ¼ zk�1i

14: end for
15: end if
16: !! sweep over subdomains
17: for sweep iteration j ¼ 1; 2;…;Nsweep do
18: for subdomain i ¼ 2; 3;…;Nsub � 2;Nsub � 1;Nsub � 2;

…; 4; 3 do
19: !! calculate the latent variables of subdomain i at time

level k
20: zki ¼ f ðzki�1; zk�1i ; zkiþ1Þ
21: end for
22: end for
23: end for

D. Extending the domain

In this study, we investigate the ability of a non-intrusive
reduced-order model in combination with a domain decomposition
approach to be able to make predictions for domains larger than that
used in the training process. We test this approach on the dataset gen-
erated from multiphase flow in a pipe. With sufficient initial condi-
tions and boundary conditions, exactly the same procedure can be
used to make predictions for the extended domain as is used to make
predictions for the domain used in training. That is, the solution is
obtained for a single subdomain, whilst sweeping over all subdomains
until convergence is reached (outlined in Sec. II C).

As the length of the pipe of interest (“extended pipe”) is longer
than the pipe used in training, initial conditions must be generated
throughout the extended pipe. The method used here is to specify ini-
tial conditions throughout the extended pipe by repeating initial con-
ditions from the shorter pipe. An alternative would be to find the
reduced variables for a steady state (for example, water in the bottom
half of the pipe and air in the top half) and use these values in every
subdomain in the extended pipe. We choose the former method to
reduce the time taken for instabilities and slugs to develop.

For the extended pipe, boundary conditions (effectively the
reduced variables in an entire subdomain) can be imposed using the
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data already available from the HFM. However, as the length of the
pipe is longer than the pipe used in training, we wish to make predic-
tions over a longer period over which snapshots were collected from
the HFM. In order to obtain boundary conditions for the extended
pipe, several methods are explored for the inlet or upstream boundary.
Of those investigated, three methods performed better than the others,
listed below.

(i) Cycling through slug formation: a slug is found in the shorter
pipe, and the velocity and volume fraction fields associated
with the advection of the slug through a subdomain are looped
over in the upstream boundary subdomain.

(ii) Perturbed instability: the volume fraction field associated with
an instability from the shorter pipe is perturbed with Gaussian
noise. This is then imposed on the boundary subdomain. The
associated velocity field is used unperturbed.

(iii) Original boundaries repeated: solutions from the shorter pipe
are cycled through in the boundary subdomain.

At the downstream boundary, reduced variables corresponding
to a steady state solution (water in the bottom half of the pipe and air
in the top half) were imposed. Specific details of the boundary condi-
tions are given in the results section. These three approaches are some-
what heuristic. As we are using information that the model will not
have seen and that does not accurately satisfy the governing equations,
we exploit the ability of the predictive adversarial network to produce
realistic results, as it should have learnt appropriate spatial and tempo-
ral covariance information during training. An alternative method for
generating boundary conditions is discussed in the section on conclu-
sions and future work.

III. RESULTS
A. Test cases

Two test cases are used to demonstrate the dimensionality reduc-
tion methods proposed in this paper. The first is flow past a cylinder
in 2D; the second is 3D multiphase flow in a pipe. The second test case
is also used to demonstrate the prediction capabilities of the predictive
adversarial network for both the domain that was used in training and
a domain that is significantly longer that the one used in training. The
code used to produce the high-fidelity model results, IC-FERST, has
been validated with experimental results for a 2D solitary wave and
3D collapsing water column,88 and with the Rayleigh–Taylor bench-
mark problem in 2D and 3D.86 The test cases used in this paper are
now described.

1. Flow past a cylinder

The following partial differential equations describe the motion
of an incompressible fluid:

$ � u ¼ 0; (12)

q
@u
@t
þ u � $u

� �
� $ � s ¼ �$p; (13)

where q is the density (assumed constant), u is the velocity vector, s
contains the viscous terms associated with an isotropic Newtonian
fluid, p represents the non-hydrostatic pressure, t is time, and the gra-
dient operator $ is defined as

$ ¼ @

@x
;
@

@y

� �T

: (14)

When solving these equations, a linear triangular element is used
with a discontinuous Galerkin discretization for the velocities and a
continuous Galerkin representation of the pressure (the P1DG-P1CV
element). As well as satisfying the Ladyzhenskaya–Babu�ska–Brezzi
condition, this element type is stable and accurate even on highly dis-
torted elements, such as those which may occur along the interface
of the two fluids.88 To discretise in time, Crank–Nicolson is used.
The resulting velocity solutions will satisfy the discretized continuity
equation. As the velocity field fully describes incompressible flow, only
the velocity variables are required by the reduced-order models. For
more details on how this system of equations is discretized and solved,
the reader is referred to Ref. 89. For the flow past a cylinder test case,
the domain measures 2.2m (horizontal axis) by 0.41m (vertical axis),
and the center of the cylinder is located at 0.2m from the leftmost
boundary on the horizontal centerline of the domain. Free slip and no
normal flow boundary conditions are applied on the upper and lower
walls; no slip is applied on the surface of the cylinder. Zero shear and
zero normal stress are applied at the outlet (the right-hand boundary
of the domain). In the following results, speeds and velocities are given
in meters per second and time is in seconds. A Reynolds number of
3900 was used:

Re ¼ qUL
l
¼ 3900; (15)

where U is the constant inlet velocity, U ¼ 0:039ms�1, the density
has value q ¼ 1000 kgm�3, and the diameter of the cylinder is
L ¼ 0:1m. Thus, the dynamic viscosity is l ¼ 10�3 kgm�1 s�1.
Formed from solutions of this problem, the dataset consists of 2000
snapshots with a time interval of 0.25 s. (An adaptive time step was
used to solve the equations; however, the solutions were saved every
0.25 s to generate the snapshots.)

2. Multiphase flow in a pipe

Multiphase slug flow in a horizontal pipe is used as the second
test case. We use an interface capturing method, in which we track the
interface by solving an advection equation for the volume fraction of
the liquid phase. Let a be the volume fraction of the liquid (water in
this case), which means that the volume fraction of the gas (air) is
ð1� aÞ. The conservation of mass for incompressible fluids can there-
fore be written as

@

@t
ðaÞ þ $ � ðauÞ ¼ 0; (16)

$ � u ¼ 0; (17)

where t represents time and u represents velocity. Assuming incom-
pressible viscous fluids, conservation of momentum yields the following:

q
@u
@t
þ u � $u

� �
¼ �$pþ $ � lð$uþ $TuÞ

� �
þ qg þ Fr; (18)

where p represents pressure, g is the gravitational acceleration vector
ð0; 0; 9:8Þ, and Fr is the force representing surface tension. The bulk
density and bulk viscosity are defined as
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q ¼ aqwater þ ð1� aÞqair; (19)

l ¼ alwater þ ð1� aÞlair; (20)

respectively, where qwater and qair are the densities of water and air,
respectively, and lwater and lair are the dynamic viscosities of water
and air, respectively. Again, the resulting velocity solutions will satisfy
the discretized continuity equation. For more details of how the gov-
erning equations are discretized and solved, see Ref. 86, including
information on the unstructured adaptive meshing process, the adap-
tive time stepping and compressive advection technique to keep the
interface at the boundary of the fluids sharp. The densities of air and
water are taken as 1.125 and 1000 kgm�3, respectively, and the viscosi-
ties are 1:81� 10�5 and 9:892� 10�4 kgm�1 s�1, respectively. The
modeled pipe has dimensions of 10m in length and a radius of
0.039m. Boundary conditions of no normal flow and no slip were
weakly enforced on the pipe wall, and any incoming momentum is
given a value of zero. The outlet of the pipe has a non-hydrostatic pres-
sure of zero, and again, any incoming velocities are set to zero and
incoming volume fraction is taken to be water. Initially, the pipe is
filled entirely with water, which flows along the axial direction at a
velocity of 4.162m s�1 in the top half of the pipe and 2.082m s�1 in
the bottom half. After the first time step, air starts flowing in through

the inlet through the top half at a velocity of 4.162m s�1, a scenario
which can lead to the formation of slugs. These values of velocity cor-
respond to superficial velocities of air and water of 2.081 and
1.041ms�1, respectively. The dataset used for training the reduced-
order models consists of solutions at 800 time levels with a fixed time
interval of 0.01 s. The reduced-order models use the velocity fields in
three directions and the volume fraction field.

B. Dimensionality reduction

Four methods for dimensionality reduction (or compression) are
compared, namely POD, CAE, AAE, and SVD-AE. An extensive
hyperparameter optimsation was performed to find the optimal set of
values for the hyperparameters of each autoencoder. Details of the
hyperparameters that were varied, the ranges over which they were
varied, and the optimal values and architectures that were obtained as
a result can be found in Tables IV–VI. Ten POD basis functions were
retained for the compression based on POD and ten latent variables
were used in the bottleneck layers of the autoencoders. For the SVD-
AE, one hundred POD coefficients were retained, which were then
compressed to ten latent variables by an autoencoder. The top part
(shaded blue) of Fig. 2 shows a schematic diagram of how the

FIG. 2. Upper part (shaded blue): shows the training of the autoencoders for the dimensionality reduction of flow past a cylinder. Lower part (shaded orange): shows how the
predictive adversarial network was trained.
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networks used for dimensionality reduction are trained for the flow
past a cylinder test case.

1. Flow past a cylinder

The CFD solutions were saved every 0.25 s for 500 s resulting in
2000 snapshots. The domain was split into four subdomains, each
spanning the entire height of the domain and a quarter of its length.
These were discretized with 20� 20 structured grids. The velocity sol-
utions from the unstructured mesh were linearly interpolated onto the
four grids using the finite element basis functions, resulting in a dataset
of 8000 samples. For POD, the columns of the snapshots matrix con-
sisted of values of both velocity components, and for the autoencoders,
the two velocity components were fed into two separate channels.
The training data (which also include the validation data) were formed
by randomly selecting 7200 samples from the full dataset. The remain-
ing 800 samples were used as the test dataset (i.e., unseen data).

To test the methods, the solutions are compressed and recon-
structed using Eq. (2) for POD, Eq. (6) for the convolutional and
adversarial autoencoders, and Eq. (9) for the SVD autoencoder. The
error in the reconstruction, Eq. (3), is calculated using the test dataset.
Figure 3 shows the effect of the four compression methods (POD,
CAE, AAE, and SVD-AE) on a snapshot taken at the 200th time level
compared against the original snapshot. The pointwise errors in the
velocity magnitude are shown on the right. It can be seen that all four
methods (including POD) perform well in their reconstruction of flow
past a cylinder. The pointwise errors indicate that, for this snapshot,
the convolutional autoencoder gives the best results, followed by the
adversarial autoencoder, the SVD-autoencoder, and finally POD.
Table I shows the mean of the square reconstruction errors calculated

over the test dataset for the flow past a cylinder test case. As seen for
the single snapshot in Fig. 3, every compression method that involves
an autoencoder outperforms POD.

2. Multiphase flow in a pipe

The domain is split into ten subdomains [each spanning one
tenth of the length (x) of the domain, but spanning the entire width
(y) and height (z)], which are discretized with 60� 20� 20 structured
grids. The velocity and volume fraction solutions from the unstruc-
tured mesh are interpolated onto these grids over 800 time levels each
corresponding to 0.01 s. As before, the finite element basis functions
are used to perform the interpolation. The dataset for this test case
therefore has a total of 8000 samples (ten subdomains and 800 time
levels).

The four compression methods (POD, CAE, AAE, and SVD-AE)
are applied to the multiphase flow dataset. For POD, one column of
the snapshot matrix consists of nodal values of the three velocity com-
ponents (each scaled between �1 and 1) and the volume fractions
(within the interval [0,1]). For the autoencoders, four channels are
used, and scaling is applied to the fields as usual. Initially, ten subdo-
mains were used; however, as the autoencoders were found to have a

FIG. 3. Velocity magnitude at a time of 50 s for the flow past a cylinder test case. From top to bottom (left): the original data; the reconstruction by POD; by the convolutional
autoencoder; by the adversarial autoencoder; and by the SVD-Autoencoder. The corresponding pointwise errors of the reconstructions are also shown (right). Each of the
reconstructions was made from 10 POD coefficients or latent variables.

TABLE I. Reconstruction error averaged over the test dataset for flow past a cylinder
using POD and several autoencoders. Each of the reconstructions was made from
10 POD coefficients or latent variables.

POD Convolutional AE Adversarial AE SVD-AE

111� 10�4 14:4� 10�4 62:9� 10�4 25:1� 10�4
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relatively high error, a further ten subdomains were created that were
randomly located within the domain, making a total of 20 subdomains
(and 16 000 samples in the dataset). Having more subdomains pro-
vided more training data, which probably led to the observed improve-
ment in the results. The autoencoders were trained with 90% of the
data chosen at random from the dataset. For details of the hyper-
parameter optimsation and the networks used, see Tables IV–VI in
the Appendix.

Figure 4 shows how the autoencoders performed in reconstruct-
ing the pipe flow dataset. It is not surprising that they seem to perform
less well than for the flow past a cylinder case, given the fact that the
compression ratio was 80 for flow past a cylinder, whereas, for pipe
flow, it was 9600. (For the former a 20� 20 grid with two fields was
compressed to ten variables, whereas for the latter this a 60� 20� 20
grid with four fields was compressed to ten variables.) Even at this
compression ratio, all dimensionality reduction methods seemed able
to reconstruct the slug in Fig. 4 to some degree, with the convolutional
AE doing this particularly well. For easier visualization, Fig. 4 shows
just part of the domain, which includes a slug and also two boundaries
between subdomains. The boundary at 2m can be identified by a
slight kink that can be observed particularly well in the reconstructions
of the AAE and the SVD-AE. This kink appears to the left of the slug,
and highlights that for some models these boundaries induced addi-
tional inaccuracies. This issue could be addressed in future research by
allowing the compressive methods to see the solutions of the neighbor-
ing subdomains during compression, so that they can explicitly take
this boundary into account.

Table II shows the reconstruction error over the test data for the
dimensionality reduction methods. Here, Eq. (3) was used, where vec-
tors uk and ðureconÞk consist of the scaled velocities and volume frac-
tions. Once again, the convolutional autoencoder has the lowest errors.

C. Prediction for multiphase flow in a pipe

As the convolutional autoencoder performed better than the
other networks for dimensionality reduction, we go on to combine

this with a predictive adversarial network within a domain decomposi-
tion framework to form a reduced-order model (AI-DDNIROM). A
schematic diagram of how the networks are combined can be seen in
Fig. 2.

1. Training and predicting with the original domain

For the prediction, the HFM produced 1400 solutions over 14 s
of real time. The training and validation data were taken from time
levels 1 to 799, and the test data from time levels 800 to 1400.
Hyperparameter optimization was performed, and the results of this
can be found in Tables VII and VIII of the Appendix. As part of this
process, it was found that the best time step for the NIROM was
0.06 s, i.e., 6 times as large as the time interval between the HFM solu-
tions. The MSE achieved on the validation data was 15:6� 10�4 and
on the test data was 103� 10�4. Figure 5 compares the predictions of
volume fraction with those of the HFM and shows the pointwise error
for two snapshots in the test data (unseen by the model). The agree-
ment between the predictive adversarial network and the HFM is very
good.

2. Extending the domain and associated
boundary conditions

Having trained an AI-DDNIROM in Sec. III C I with snapshots
from the 10m long pipe and made predictions for that pipe, in this
section. we use the method described in Sec. IID to predict the flow

FIG. 4. The volume fractions taken at a time of 1.73 s, spanning the domain between 1.59 and 3.67m. A cross section along the length through the center of the pipe is shown.
From top to bottom (left), the snapshots are from the original pipe flow data; the data reconstructed by POD; by the convolutional autoencoder; by the adversarial autoencoder;
and by the SVD-Autoencoder. The pointwise errors of the reconstructions are also shown (right). Each of the reconstructions was made from 10 POD coefficients or latent
variables.

TABLE II. Reconstruction error for POD and the autoencoders over the test dataset
of multiphase slug flow. Each of the reconstructions were made from 10 POD coeffi-
cients or latent variables.

POD Convolutional AE Adversarial AE SVD-AE

21:7� 10�4 4:70� 10�4 20:2� 10�4 30:8� 10�4
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evolution and volume fractions along a pipe of length 98m based on
training data from the 10m pipe. The extended pipe is split into 98
subdomamins, for which the initial conditions come from the simula-
tion of the 10m pipe taken at 7.2 s (time level 720). This is in order to
start simulating from a state that is well developed. The first subdo-
main of the 98m pipe takes initial conditions from the third subdo-
main of the 10m pipe; the second to seventh subdomains of the 98m
pipe take the values from the fourth to the ninth subdomains of
the 10m pipe. This is repeated 15 more times, and the final subdomain
of the 98m pipe takes the tenth and final subdomain of the 10m pipe,
see Fig. 6. The first, second, and tenth subdomains of the 10m pipe
were not used, to avoid introducing any spurious effects from
the boundaries.

Velocity and volume fractions are specified throughout time
in the first and last (98th) subdomains, which act in a manner sim-
ilar to boundary conditions. There is no high-fidelity model for the
98m pipe from which to take boundary conditions, and, as the
time over which predictions are made exceeds the time over which
snapshots were collected from the high-fidelity model of the 10m
pipe, boundary conditions must be generated somehow. Three
methods of producing boundary conditions are reported (as
described in Sec. II D):

(i) Cycling through slug formation: a slug is found in the shorter
pipe, and the velocity and volume fraction fields associated
with the advection of this slug through the subdomain are
repeated as required. The particular subdomain of the shorter
pipe was the third (between 2 and 3m), between time levels
750 and 804. So, the boundary condition for the left-most end
of the extended pipe can be written as

aext1 ðtkÞ ¼ a3ð~t kÞ 8tk P 0; (21)

uext
1 ðtkÞ ¼ u3ð~t kÞ 8tk P 0; (22)

where tk ¼ kDt for time level k, (k ¼ 0; 1;…,) and a time step
of Dt, and

~t k ¼
tk
Dt
ðmod54Þ þ 750

� �
Dt: (23)

where aðmodnÞ gives the non-negative remainder when n has
been subtracted from a as many times as possible. For this
example, the time step of the reduced-order model is 0.06 s.
The slug appears in this subdomain shortly after the selected
time window as a relatively thin instability, of the order of
magnitude of 10 cm in length, and develops in width as it
advects through the domain.

(ii) Perturbed instability: at the 798th time level an instability
occurs in the third subdomain of the shorter pipe. The volume
fraction field associated with this is perturbed spatially by
Gaussian noise, the velocity field is left unperturbed, and both
are used as boundary conditions in the first subdomain of the
extended pipe. In the following, aext1 is the volume fraction in
the first subdomain of the extended pipe, a3 is the volume frac-
tion in the third subdomain of the shorter pipe:

aext1 ðtkÞ ¼ a3ð~t kÞ þ r 8tk P 0; (24)

uext
1 ðtkÞ ¼ u3ð~t kÞ 8tk P 0; (25)

where ~t k ¼ 7.98 s and r is a random spatial perturbation.

FIG. 5. A snapshot of the volume fractions (left) and the velocity fields (right) at t ¼ 8.96 s, spanning the domain between 2.86 and 4.51 m and sliced exactly through the mid-
dle. The top plots show the original CFD, the middle plots show the predictions from the AI-DDNIROM and the bottom plots show the pointwise error between the CFD and the
AI-DDNIROM.

FIG. 6. Above: the shorter, original pipe used in generating the snapshots with subdomain numbering. Below: the extended pipe with initial conditions taken from the indicated
subdomains of the shorter pipe. The gray subdomains at either end take their initial conditions from the boundary conditions.
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(iii) Original boundaries repeated: velocity and volume fraction solu-
tions from the third subdomain of the shorter pipe are used as
the boundary conditions for the first subdomain in the extended
pipe and repeated for as long as required. The solution fields
from time 1 s to 8 s are used, as this corresponds to times where
the air had passed through the entire length of the shorter pipe.
Therefore, for times in ½0; 7Þ seconds of the extended pipe, times
in ½1; 8Þ seconds of the shorter pipe are used; for times in [7,14)
seconds of the extended pipe, times in [1,8) seconds of the
shorter pipe are used; etc. So, the boundary condition for the
left-most end of the extended pipe can be written as

aext1 ðtkÞ ¼ a3ð~t kÞ 8tk P 0; (26)

uext
1 ðtkÞ ¼ u3ð~t kÞ 8tk P 0; (27)

where tk ¼ kDt for time level k, (k ¼ 0; 1;…,) and a time step
of Dt, and

~t k ¼
tk
Dt
ðmod700Þ þ 100

� �
Dt: (28)

In all cases, the boundary condition for the final subdomain is based
on a snapshot from subdomain 2 at 7.5 s in the 10m pipe when the
flow was almost steady with the lower half of the pipe occupied by
water and the upper half occupied by air.

Various statistics are presented in this section in an aim to assess
whether the AI-DDNIROM approach produces realistic results. If the
expected advantage of the adversarial training strategy to produce a
model that does not extrapolate beyond the seen training data holds
true, then the predictive model could be expected to not diverge signif-
icantly from the original simulation. Figures 7(a)–7(c) show how the
liquid volume fraction field varies over time in the original simulation

and for the reduced models using two of the tested boundary condi-
tions (cycling through slug formation and perturbed instability). The
results obtained when repeating the original boundary conditions
were similar to the original simulation and are not shown here. The
time interval for the two reduced-order models corresponds to the
instabilities having passed through two thirds of the pipe. Time series
data were collected at values of x ¼ 6:5m (for the original simulation)
and x ¼ 64:5m (for the two reduced models), and at a height of
0.0039m (a tenth of the pipe radius) above the centerline of the pipe.
To analyze the frequency spectra, a discrete Fourier transform was
then applied to the data. Figures 7(d)–7(f) show that the slug charac-
teristic frequency spectra for the predictions are similar to that of the
original simulation. In particular, the main peak has a similar value in
all three simulations (original simulation: 0.76Hz; reduced model
which cycles through slug formation: 0.7Hz; reduced model with the
perturbed instability 0.88Hz). This suggests that simulations from the
AI-DDNIROMs based on either of these boundary conditions are able
to behave in a realistic way. In fact, the frequency of the main peak
could be interpreted as the pseudo-slug frequency. Technically slugs
are only defined as such when they span the full vertical extent of the
pipe. On the other hand, pseudo-slugs90 or proto-slugs91 are precur-
sors to slugs, which do not necessarily reach the full height of the pipe.

Figure 8 follows a pseudo-slug for five time levels as viewed
through the volume fraction fields for the original simulation and the
reduced-order models. It shows first that the instabilities presented in
Figs. 8(d) and 8(e) were similar to an instability that also occurred
within the original simulation, presented in Fig. 8(c). Furthermore, by
observing that the instabilities traveled similar distances between time
levels, it can be deduced that they traveled at a similar velocity within
the shown timespan as well. While this only presents the dynamics for
a single instability at a couple of points in time, the similarity of these

FIG. 7. (a)–(c) Volume fractions plotted against time at (a) 6.5 m for the original results and at (b) and (c) 64.5 m for the reduced models. In each case, the data were collected
at a height of 0.1r¼ 0.0039 m above the centerline of the pipe. (d)–(f) Discrete Fourier Transform (DFT) applied to the data presented in subfigures (a)–(c). (a) Original simula-
tion; (b) cycling through slug formation; (c) perturbed instability; (d) original simulation; (e) cycling through slug formation; and (f) perturbed instability.
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situations might reveal that the predictive adversarial model was pro-
ducing a situation very similar to one it had seen before, which is what
this model was hypothesized to do due to its use of the adversarial
training strategy.

Figures 9(a)–9(c) show the volume fractions averaged over the
full 98m domain for a short time period. Note that the start of this
time period was chosen so that the influence of the boundaries had
already propagated throughout the domain. Figures 9(d)–9(f) display

FIG. 8. (a) and (b) Volume fractions from AI-DDNIROMs with boundary conditions as indicated at a single point in time spanning the domain between 20 and 80m and at a
height of 0.0039 m. (c)–(e) Zoomed in sections from subfigures (a) and (b) and a section of the original simulation, plotted for a few consecutive timesteps. (a) Cycling through
slug formation; (b) perturbed instability; (c) original simulation; (d) cycling through slug formation; and (e) perturbed instability.

FIG. 9. Mean volume fractions throughout the pipe spanning the domain between 20 and 80m for the different boundary conditions. (a)–(c) Volume fractions averaged over all
points in space. (d)–(f) Volume fractions averaged over time, as well as width and length. Note that r refers to the standard deviation. (a) Cycling through slug formation; (b)
perturbed instability; (c) original boundaries repeated; (d) cycling through slug formation; (e) perturbed instability; and (f) original boundaries repeated.
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the volume fractions averaged over the time period included in the
previous three subfigures [Figs. 9(a)–9(c)], and the width and length
of the domain. These latter three plots thus show how the volume frac-
tions change with respect to height. It is clear from these plots that
most of the water collects at the bottom of the pipe. If we assume that
the situation in which the original boundaries were repeated in their

entirety produced results similar to the original simulation, the fact
that the plotted dynamics are similar to the two simulations with artifi-
cially generated boundaries suggests strongly that the model was mak-
ing realistic predictions here for each of the boundaries.

Figure 10 displays the volume fractions predicted by the AI-
DDNIROMs throughout the pipe along the centerline (xz plane) for

FIG. 10. Volume fractions as a result of different boundary conditions [(a) cycling through slug formation, (b) perturbed instability, and (c) original boundaries repeated] through-
out 12 s in time for the entire 98m pipe. Note that the volume fractions were averaged over the entire height of the pipe.
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12 s in time and averaged over the height of the pipe. The red bands
that stretch diagonally along the plotted domain represent slugs
propagating downstream through the domain as time progresses.
The slopes of these lines represent the corresponding velocities. Black
lines have been drawn on these plots to indicate these liquid slug
velocities and also velocities of secondary waves (light blue). The
velocity magnitudes are given in Table III. From these plots and the
table, one can see that both the slug velocities and velocities of
the secondary waves produced by different boundary conditions are
very similar. Note that the slight variations may have been caused by the
interactions of slugs being within each others vicinity. A pattern that
is generally observed in each of the three graphs in Fig. 10 is that two
slugs which are close to one another tend to slowly approach one
another. The slug which is ahead seems to slow down and disappear as
the approaching slug catches up. These graphs also clearly display the
influence of the boundary at the inlet on the simulation. In fact, the
first couple of meters is where the simulations differ the most.
However, it seems that after those first couple of meters the simulations
all restore to a very similar pattern. In a similar experimental setup to

the computational domain modeled here, what has been observed
is that the slug frequencies are largest near the inlet, but, after about
5m, settle to a value independent of the distance from the inlet.92

Correlations for slug frequency are often sensitive to the superficial
liquid velocity, which, in turn depends on the mass of liquid in the
pipe,93 so the fact that the slug frequencies do not appear to change
significantly after about 10m (see corresponding slug lengths in
Fig. 10), seems to suggest that the mass of liquid is conserved along
the pipe.

Figure 11 shows the volume fractions at a few steps in time to give
an impression of these fields throughout the full width of the domain,
showing a different perspective of the information seen in Fig. 10.

3. Computational times

The AI-DDNIROM shows a significant computational speed up
over the high-fidelity model as expected. The high-fidelity model of
the 10m pipe took approximately two weeks to complete (run on pro-
cessor type IntelV

R

XeonVR E5–2640, 2.4GHz), whereas the AA-
DDNIROM prediction for the 98m pipe took approximately
20minutes to generate (run on GPUs within Google’s Colab
platform94,95)

IV. CONCLUSIONS AND FURTHER WORK

We present an AI-based non-intrusive reduced-order model
combined with domain decomposition (AI-DDNIROM), which is
capable of making predictions for significantly larger domains than
the domain used in training the model. For dimensionality reduction
we use a convolutional autoencoder and for prediction we use a pre-
dictive adversarial network. During training, the predictive adversarial

FIG. 11. Volume fractions at 36 s (upper) and 48 s (lower), at a height of 0.0039m above the centerline of the pipe (excluding the first and last subdomain due to the fact that
these subdomains showed different values from those throughout the rest of the domain, skewing the vertical axes) for the two predictions with different boundary conditions.
Plots (a)–(c) are for t¼ 36 s, and plots (d)–(f) are for t¼ 48 s. (a) Cycling through slug formation; (b) perturbed instability; (c) original boundaries repeated; (d) cycling through
slug formation; (e) perturbed instability; and (f) original boundaries repeated.

TABLE III. The slug velocities and secondary wave velocities for the three methods
of generating boundary conditions.

Slug
velocity

Secondary
wave velocity

Cycling through slug formation 3.5m s�1 1.5m s�1

Perturbed instability 3.4m s�1 1.m s�1

Original boundaries repeated 3.3m s�1 1.5m s�1
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network learns the underlying probability distribution (of the latent
variables) associated with the fluids’ behavior. The main findings of
this study are listed below.

(i) For dimensionality reduction, a number of autoencoders are com-
pared with proper orthogonal decomposition, and the convolu-
tional autoencoder is seen to perform the best for both test cases
(2D flow past a cylinder and 3D multiphase flow in a pipe).

(ii) When training neural networks, it has been observed that com-
putational physics applications typically have access to less
training data than image-based applications,12,23 which can
lead to poor generalization. To combat this, for the dimension-
ality reduction of multiphase flow in a pipe, we use
“overlapping” snapshots, that is, in addition to ten subdomains
being equally spaced along the pipe, ten supplementary subdo-
mains are located at random within the pipe. This doubles the
amount of training data and results in improved performance.

(iii) For prediction, we use an predictive adversarial network based on
the adversarial autoencoder53 but modified to predict in time.
This model performs well, gives realistic results, and, unlike feed
forward or recurrent networks without such an adversarial layer,
does not diverge for the multiphase test case shown here.

(iv) Finally, we make predictions for a 98m pipe (the “extended
pipe”) with the AI-DDNIROM that was trained on results
from a 10m pipe. Statistics of results from the extended pipe
are similar to those of the original pipe, so we conclude that
the predictive adversarial network has made realistic predic-
tions for this extended pipe.

A number of improvements could be made to the approach pre-
sented here. A physics-informed term could be included in the loss
function of either the convolutional autoencoder or the predictive
adversarial network. This would ensure that conservation of mass and
momentum would be more closely satisfied by the predictions of the
neural networks. Second, although the initial conditions have little
effect on the predictions, the boundary conditions do have a significant
effect. Rather than the heuristic approach adopted here, a generative
adversarial model (GAN) could be used to predict boundary condi-
tions for the inlet and outlet subdomains. The GAN could be trained
to predict the reduced variables at several time levels, then latent varia-
bles consistent with all but one of the time levels (the future time level)
can be found by an optimization approach.67 From these latent varia-
bles, the boundary condition for the future time level can be obtained.
Finally, a hierarchy of reduced-order models could be used in order to
make the approach faster. The lowest-order model could represent the
simplest physical features of the flow, and the higher-order models
could represent more complicated flow features. To decide whether
the model being used in a particular subdomain was sufficient, the dis-
criminator of the predictive adversarial network could be used.
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APPENDIX: HYPERPARAMETER OPTIMIZATION

Extensive hyperparameter optimzation was carried out for the
artificial neural networks used in this investigation. This was done
on the Weights and Biases platform which allows for efficient
searching of high-dimensional parameter space, using methods
such as random searches and Bayesian searches. For example, to
perform a grid search of the predictive adversarial network for one
architecture would involve searching 18 dimensional parameter
space, and, with the combinations given in Table IV, would amount

TABLE IV. Variation and ranges of values studied during the hyperparameter
optimization.

All networks

Activation functions tanh, sigmoid, relu, elu
Final activation Function tanh, sigmoid, linear
Architecturea Number of layers: 6, � � �, 20

Number of channels: 2, � � �, 128
Dense layer sizes (non-latent):
32, � � �, 2000
Kernel sizes: 3, 5
Layer types: {1D, 2D, 3D}-Conv.,
{1D, 2D, 3D}-MaxPool,
{1D, 2D, 3D}-UpSample, Dense

Batch size 32, 64, 128
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to over 2 billion (2� 109) model evaluations (for one architecture).
Instead of using a grid search, we perform an initial random search
of parameter space, followed by Bayesian optimization. For the pre-
dictive adversarial network, this resulted in 1530 model evaluations
(for all architectures). The full report for this network is available
on Weights & Biases.

Table IV shows the range of hyperparameters that were inves-
tigated during optimization for all the networks (the three
autoencoder-based networks used for dimensionality reduction for
the two test cases and the predictive adversarial network used in
multiphase flow in a pipe). These include the exponential decay
rate for the first moment estimates (b1); the exponential decay rate
for the exponentially weighted infinity norm (b2); the interval
between snapshots (interval) so that an interval of n corresponds
to every nth snapshot being put in the datasets; the number of dis-
criminator iterations (n discrim); the number of gradient ascent steps
(n gradient); the standard deviation of the noise that was randomly
added to the input of the discriminator within the adversarial
autoencoder.

Table V shows the optimal values found in the hyperparameter
optimization for the dimensionality reduction methods based on
autoencoders for flow past a cylinder and for multiphase flow in a
pipe.

Table VI gives the optimal architectures found by hyperpara-
meter optimization the six autoencoder-based networks used in the
dimensionality reduction of flow past a cylinder and multiphase
flow in a pipe.

Table VII shows the optimal values found in the hyperpara-
meter optimization for the predictive adversarial network used for
the non-intrusive reduced-order model of multiphase flow in a
pipe, and Table VIII gives the optimal architecture.

TABLE V. The optimal values for the hyperparameters of the autoencoders used in the dimensionality reduction stage of flow
past a cylinder and multiphase flow in a pipe.

Flow past a cylinder Multiphase pipe flow

CAE AAE SVD-AE CAE AAE SVD-AE

Activation functions:
Convolutional
layers

elu elu elu elu sigmoid

Dense layers relu relu relu relu linear sigmoid
Output layer elu sigmoid sigmoid linear

Optimizer:
Method Adam Nadam Nadam Adam Adam Nadam
b1 0.98 0.9 0.98 0.8 0.9 0.8
b2 0.9 0.999 99 0.999 99 0.9 0.9 0.999 99

Batch size 128 128 64 64 32 64
Epochs 200 200 200 100 1000 100
Batch normalization False False
Train method Default Default
Dropout 0.55 0.55
Learning rate 0.00005 0.000 005 0.0005 0.0005 0.000 005 0.000 05
Regularization 0 0 0 0 0 0

TABLE IV. (Continued.)

All networks

Optimizer Adam, Nadam, SGD
b1 0.8, 0.9, 0.98
b2 0.9, 0.999, 1
Batch normalization True, false
Dropout 0.3, 0.55, 0.8
Epochs 100, 200, 500, 1000, 2000
Interval 1, 2, 4, 5, 6, 10
Learning rate 0.000 05, 0.0005, 0.005

Adversarial networks only

Discrim architecturea Number of layers: 3
Dense layer sizes

(non-latent): 100, 500, 1000
Layer types: dense

n discrim 1, 2, 5
n gradient 0, 3, 8, 15, 30 (0 means that no

steps of gradient ascent were taken)
std noise 0, 0.000 01, 0.001, 0.01, 0.05, 0.1
Regularization 0, 0.000 001, 0.000 01, 0.001

Predictive adversarial networks only

Latent vars 30, 50, 100

aHere a global picture of the architectures is presented, for the source code containing
all of the used architectures please see the Github repository: https://github.com/acse-
zrw20/DD-GAN-AE/tree/main/ddganAE/architectures.
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TABLE VII. The optimal values of the hyperparameters for the predictive adversarial
network found by optimization for multiphase flow in a pipe.

Activation functions: Dropout 0.3
Convolutional layers relu Interval 6
Dense layers relu Learning rate 0.000 05
Final layer tanh Latent vars 100

Optimizer: n discrim 1
Method Nadam n gradient 15
b1 0.98 std noise 0.01
b2 0.9 Regularization 0.001

Batch size 32 Batch
normalization

True

Epochs 2000 Training
method

Weighted
loss

TABLE VI. The optimal architectures of the autoencoder-based networks used for dimensionality reduction. The figures in the table are the dimensions of the outputs of each
layer. For tuples, the final value represents the number of channels or feature maps. The layer type can be convolutional (Conv), maxpooling (MaxPool), or upsampling
(UpSample). Flatten layers take an n-dimensional array as an input and return a 1D array as an output. A reshape layer converts a 1 D input to have the indicated output
dimensions.

Flow past a cylinder Multiphase flow in a pipe

Layers CAE AAE SVD-AE CAE AAE SVD-AE

Input (55, 42, 2) (55, 42, 2) 100 (60, 20, 20, 4) (60, 20, 20, 4) 100
Conv (55, 42, 32) (55, 42, 32) (60, 20, 20, 32) (60, 20, 20, 32)
MaxPool (28, 21, 32) (28, 21, 32) (30, 10, 10, 32) (30, 10, 10, 32)
Conv (28, 21, 64) (28, 21, 64) (30, 10, 10, 64) (30, 10, 10, 64)
MaxPool (14, 11, 64) (14, 11, 64) (15, 5, 5, 64) (15, 5, 5, 64)
Conv (14, 11, 128) (15, 5, 5, 128) (15, 5, 5, 128)
MaxPool (7, 6, 128) (8, 3, 3, 128) (8, 3, 3, 128)
Flatten 5376 9856 9216 9216
Dense 1 2688 9856 500a 10 4608 1500
Dense 2 10 4926 500a 9216 10 2000
Dense 3 2688 10 10 4608 10
Dense 4 5376 4926 500a 9218 1500
Dense 5 9856 500a 2000
Dense 6 9856
Reshape (7, 6, 128) (14, 11, 64) (8, 3, 3, 128) (8, 3, 3, 128)
Conv (7, 6, 128) (14, 11, 64) (8, 3, 3, 128) (8, 3, 3, 128)
UpSample (14, 12, 128) (28, 22, 64) (16, 6, 6, 128) (16, 6, 6, 128)
Conv (14, 12, 64) (28, 22, 32) (16, 6, 6, 64) (16, 6, 6, 64)
Upsample (28, 24, 64) (56, 44, 32) (32, 12, 12, 64) (32, 12, 12, 64)
Conv (28, 24, 32) (56, 44, 2) (30, 10, 10, 32)b (30, 10, 10, 32)b

UpSample (56, 48, 32) (60, 20, 20, 32) (60, 20, 20, 32)
Conv (56, 48, 2) (60, 20, 20, 4) (60, 20, 20, 4)
Crop (55, 42, 2)
Output 100 100
Trainable parameters 29 300 300 291 587 010 612 110 1196 238 86 001 860 6 392 110

aDenotes a layer which is followed by a dropout layer during training.
bDenotes convolutional layers which have no padding. In all other cases padding is set so that the output has the same dimensions as the input array, although the number of chan-
nels may vary.

TABLE VIII. The optimal architecture of the predictive adversarial network found by
hyperparameter optimization for multiphase flow in a pipe.

Layers
Predictive adversarial

network Discriminator

Input 30 100
Dense 1 500 100
Dense 2 500 500
Dense 3 100
Dense 4 500
Dense 5 500
Output 10 1
Trainable parameters 622 110 61 101
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56F. Regazzoni, L. Dedè, and A. Quarteroni, “Machine learning for fast and reli-
able solution of time-dependent differential equations,” J. Comput. Phys. 397,
108852 (2019).

57S. Pawar, S. M. Rahman, H. Vaddireddy, O. San, A. Rasheed, and P. Vedula,
“A deep learning enabler for nonintrusive reduced order modeling of fluid
flows,” Phys. Fluids 31, 085101 (2019).

58S. E. Ahmed, O. San, D. A. Bistrian, and I. M. Navon, “Sampling and resolution
characteristics in reduced order models of shallow water equations: Intrusive
vs nonintrusive,” Int. J. Numer. Methods Fluids 92, 992–1036 (2020).

59W. Chen, Q. Wang, J. S. Hesthaven, and C. Zhang, “Physics-informed machine
learning for reduced-order modeling of nonlinear problems,” J. Comput. Phys.
446, 110666 (2021).

60C. J. Arthurs and A. P. King, “Active training of physics-informed neural net-
works to aggregate and interpolate parametric solutions to the Navier-Stokes
equations,” J. Comput. Phys. 438, 110364 (2021).

61D. Xiao, F. Fang, C. E. Heaney, I. M. Navon, and C. C. Pain, “A domain decom-
position method for the non-intrusive reduced order modelling of fluid flow,”
Comput. Methods Appl. Mech. Eng. 354, 307–330 (2019).

62D. Xiao, C. E. Heaney, F. Fang, L. Mottet, R. Hu, D. A. Bistrian, E.
Aristodemou, I. M. Navon, and C. C. Pain, “A domain decomposition non-
intrusive reduced order model for turbulent flows,” Comput. Fluids 182, 15–27
(2019).

63R. Maulik, T. Botsas, N. Ramachandra, L. R. Mason, and I. Pan, “Latent-space
time evolution of non-intrusive reduced-order models using Gaussian process
emulation,” Physica D 416, 132797 (2021).

64R. Maulik, B. Lusch, and P. Balaprakash, “Non-autoregressive time-series
methods for stable parametric reduced-order models,” Phys. Fluids 32, 087115
(2020).

65C. Quilodr�an-Casas, R. Arcucci, C. C. Pain, and Y.-K. Guo, “Adversarially
trained LSTMs on reduced order models of urban air pollution simulations,”
arXiv:2101.01568 [cs.LG] (2021).

66M. Cheng, F. Fang, C. C. Pain, and I. M. Navon, “An advanced hybrid deep
adversarial autoencoder for parameterized nonlinear fluid flow modelling,”
Comput. Methods Appl. Mech. Eng. 372, 113375 (2020).

67V. L. S. Silva, C. E. Heaney, and C. C. Pain, “Data assimilation predictive GAN
(DA-PredGAN): Applied to determine the spread of COVID-19,”
arXiv:2105.07729 [cs.LG] (2021).

68C. Quilodr�an-Casas, V. S. Silva, R. Arcucci, C. E. Heaney, Y.-K. Guo, and C. C.
Pain, “Digital twins based on bidirectional LSTM and GAN for modelling the
COVID-19 pandemic,” Neurocomputing 470, 11–28 (2022).

69T. Kadeethum, D. O’Malley, J. N. Fuhg, Y. Choi, J. Lee, H. S. Viswanathan, and
N. Bouklas, “A framework for data-driven solution and parameter estimation
of PDEs using conditional generative adversarial networks,” arXiv:2105.13136
[cs.LG] (2021).

70M. Cheng, F. Fang, C. C. Pain, and I. M. Navon, “Data-driven modelling
of nonlinear spatio-temporal fluid flows using a deep convolutional generative
adversarial network,” Comput. Methods Appl. Mech. Eng. 365, 113000
(2020).

71M. Cheng, F. Fang, C. C. Pain, and I. M. Navon, “A real-time flow forecasting
with deep convolutional generative adversarial network: Application to flooding
event in Denmark,” Phys. Fluids 33, 056602 (2021).

72J. Baiges, R. Codina, and S. Idelsohn, “A domain decomposition strategy for
reduced order models. Application to the incompressible Navier-Stokes equa-
tions,” Comput. Methods Appl. Mech. Eng. 267, 23–42 (2013).

73L. Gastaldi, “A domain decomposition method associated with the streamline
diffusion FEM for linear hyperbolic systems,” Appl. Numer. Math. 10, 357–380
(1992).

74L. M. Yang and I. Grooms, “Machine learning techniques to construct
patched analog ensembles for data assimilation,” J. Comput. Phys. 443,
110532 (2021).

75A. Skillen, A. Revell, and T. Craft, “Accuracy and efficiency improvements in
synthetic eddy methods,” Int. J. Heat Fluid Flow 62, 386–394 (2016).

76K. Fukami, Y. Nabae, K. Kawai, and K. Fukagata, “Synthetic turbulent inflow
generator using machine learning,” Phys. Rev. Fluids 4, 064603 (2019).

77J. Kim and C. Lee, “Deep unsupervised learning of turbulence for inflow gener-
ation at various reynolds numbers,” J. Comput. Phys. 406, 109216 (2020).

78J. Kjølaas, A. De Leebeeck, and S. Johansen, “Simulation of hydrodynamic slug
flow using the LedaFlow slug capturing model,” in 16th International
Conference on Multiphase Production Technology (OnePetro, 2013).

79A. Bonzanini, D. Picchi, and P. Poesio, “Simplified 1D incompressible two-
fluid model with artificial diffusion for slug flow capturing in horizontal and
nearly horizontal pipes,” Energies 10, 1372 (2017).

80B. I. Krasnopolsky and A. A. Lukyanov, “A conservative fully implicit algo-
rithm for predicting slug flows,” J. Comput. Phys. 355, 597–619 (2018).

81B. Ma and N. Srinil, “Planar dynamics of inclined curved flexible riser carrying
slug liquid-gas flows,” J. Fluids Struct. 94, 102911 (2020).

82T.-W. Kim, S. Kim, and J.-T. Lim, “Modeling and prediction of slug character-
istics utilizing data-driven machine-learning methodology,” J. Pet. Sci. Eng.
195, 107712 (2020).

83G. Tryggvason and J. Lu, “Direct numerical simulations of multiphase flows:
Opportunities and challenges,” AIP Conf. Proc. 2293, 030002 (2020).

84F. Xie, X. Zheng, M. S. Triantafyllou, Y. Constantinides, Y. Zheng, and G. E.
Karniadakis, “Direct numerical simulations of two-phase flow in an inclined
pipe,” J. Fluid Mech. 825, 189–207 (2017).

85G. Tryggvason, R. Scardovelli, and S. Zaleski, Direct Numerical Simulations of
Gas-Liquid Multiphase Flows (Cambridge University Press, 2011).

86A. Obeysekara, P. Salinas, C. E. Heaney, L. Kahouadji, L. Via-Estrem, J. Xiang,
N. Srinil, A. Nicolle, O. K. Matar, and C. C. Pain, “Prediction of multiphase
flows with sharp interfaces using anisotropic mesh optimisation,” Adv. Eng.
Software 160, 103044 (2021).

87P. Baldi and K. Hornik, “Neural networks and principal component analysis:
Learning from examples without local minima,” Neural Networks 2, 53–58
(1989).

88L. Via-Estrem, P. Salinas, Z. Xie, J. Xiang, J.-P. Latham, S. Douglas, I. Nistor,
and C. Pain, “Robust control volume finite element methods for numerical
wave tanks using extreme adaptive anisotropic meshes,” Int. J. Numer.
Methods Fluids 92, 1707–1722 (2020).

89Z. Xie, D. Pavlidis, P. Salinas, J. R. Percival, C. C. Pain, and O. K. Matar, “A
balanced-force control volume finite element method for interfacial flows with
surface tension using adaptive anisotropic unstructured meshes,” Comput.
Fluids 138, 38–50 (2016).

90Y. Fan, E. Pereyra, and C. Sarica, “Experimental study of pseudo-slug flow in
upward inclined pipes,” J. Nat. Gas Sci. Eng. 75, 103147 (2020).

91C. Friedemann, M. Mortensen, and J. Nossen, “Gas-liquid slug flow in a hori-
zontal concentric annulus, a comparison of numerical simulations and experi-
mental data,” Int. J. Heat Fluid Flow 78, 108437 (2019).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 055111 (2022); doi: 10.1063/5.0088070 34, 055111-20

VC Author(s) 2022

http://arxiv.org/abs/2110.03442
http://arxiv.org/abs/2109.02126v1
https://doi.org/10.1002/nme.6681
https://doi.org/10.1063/5.0074310
https://doi.org/10.1016/j.cma.2021.114181
http://arxiv.org/abs/1511.05644
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2019.07.050
https://doi.org/10.1063/1.5113494
https://doi.org/10.1002/fld.4815
https://doi.org/10.1016/j.jcp.2021.110666
https://doi.org/10.1016/j.jcp.2021.110364
https://doi.org/10.1016/j.cma.2019.05.039
https://doi.org/10.1016/j.compfluid.2019.02.012
https://doi.org/10.1016/j.physd.2020.132797
https://doi.org/10.1063/5.0019884
http://arxiv.org/abs/2101.01568
https://doi.org/10.1016/j.cma.2020.113375
http://arxiv.org/abs/2105.07729
https://doi.org/10.1016/j.neucom.2021.10.043
http://arxiv.org/abs/2105.13136
https://doi.org/10.1016/j.cma.2020.113000
https://doi.org/10.1063/5.0051213
https://doi.org/10.1016/j.cma.2013.08.001
https://doi.org/10.1016/0168-9274(92)90057-K
https://doi.org/10.1016/j.jcp.2021.110532
https://doi.org/10.1016/j.ijheatfluidflow.2016.09.008
https://doi.org/10.1103/PhysRevFluids.4.064603
https://doi.org/10.1016/j.jcp.2019.109216
https://doi.org/10.3390/en10091372
https://doi.org/10.1016/j.jcp.2017.11.032
https://doi.org/10.1016/j.jfluidstructs.2020.102911
https://doi.org/10.1016/j.petrol.2020.107712
https://doi.org/10.1063/5.0027046
https://doi.org/10.1017/jfm.2017.417
https://doi.org/10.1016/j.advengsoft.2021.103044
https://doi.org/10.1016/j.advengsoft.2021.103044
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1002/fld.4845
https://doi.org/10.1002/fld.4845
https://doi.org/10.1016/j.compfluid.2016.08.005
https://doi.org/10.1016/j.compfluid.2016.08.005
https://doi.org/10.1016/j.jngse.2020.103147
https://doi.org/10.1016/j.ijheatfluidflow.2019.108437
https://scitation.org/journal/phf


92P. Ujang, C. Lawrence, C. Hale, and G. Hewitt, “Slug initiation and evolu-
tion in two-phase horizontal flow,” Int. J. Multiphase Flow 32, 527–552
(2006).

93A. H. Zitouni, A. Arabi, Y. Salhi, Y. Zenati, E. K. Si-Ahmed, and J. Legrand,
“Slug length and frequency upstream a sudden expansion in gas-liquid inter-
mittent flow,” Exp. Comput. Multiphase Flow 3, 124–130 (2021).

94Google Research, see https://colab.research.google.com for “Google Colab”
(last accessed November 16, 2021).

95E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud
Platform: A Comprehensive Guide (Apress, Berkeley, CA, 2019), pp. 59–64.

96See https://github.com/acse-zrw20/DD-GAN-AE for some codes and informa-
tion about the various neural networks used in this paper.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 055111 (2022); doi: 10.1063/5.0088070 34, 055111-21

VC Author(s) 2022

https://doi.org/10.1016/j.ijmultiphaseflow.2005.11.005
https://colab.research.google.com
https://github.com/acse-zrw20/DD-GAN-AE
https://scitation.org/journal/phf

	l
	s1
	f1
	s2
	s2A
	s2B
	s2B1
	d1
	d2
	d3
	d4
	d5
	s2B2
	d6
	s2B3
	d7
	s2B4
	d8
	d9
	s2C
	d10
	d11
	r1
	s2D
	s3
	s3A
	s3A1
	d12
	d13
	d14
	d15
	s3A2
	d16
	d17
	d18
	d19
	d20
	s3B
	f2
	s3B3
	s3B4
	f3
	t1
	s3C
	s3C5
	s3C6
	f4
	t2
	d21
	d22
	d23
	d24
	d25
	f5
	f6
	d26
	d27
	d28
	f7
	f8
	f9
	f10
	s3C7
	s4
	f11
	t3
	l
	app1
	t4
	t5
	t4n1
	t7
	t6
	t6n1
	t6n2
	t8
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78
	c79
	c80
	c81
	c82
	c83
	c84
	c85
	c86
	c87
	c88
	c89
	c90
	c91
	c92
	c93
	c94
	c95
	c96

