201 research outputs found

    Photoelectrocatalytic Performances of Nanostructured/Decorated TiO 2

    Get PDF
    The behaviour of TiO2 based electrodes was investigated during the photoelectrocatalytic water splitting process. TiO2 nanotubes and compact oxide structures were obtained by electrochemical oxidation of Ti foils. A subsequent hydrothermal process carried out at both the nanotubular and compact oxide structures allowed decorating the structure by TiO2 nanoparticles. The synthesized TiO2 samples worked as photoanodes both in a bulk three electrode cell and in a thin gap cell. The results from measurements of the photocurrent and from electrochemical impedance spectroscopy were used to highlight a combined effect of the wavelength of the incident light and the kind of cell configuration, on the global performance of the systems. The results indicate that the decoration process does not result only in a simple increase of the specific surface, but it also determines a different concentration of the bulk and superficial sites in the electrode. The different response of the sites at different wavelengths, along with the accessibility of the electrolyte to the porous structure are evocated to justify the experimental behaviour observed

    Controlling the Er content of porous silicon using the doping current intensity

    Get PDF
    The results of an investigation on the Er doping of porous silicon are presented. Electrochemical impedance spectroscopy, optical reflectivity, and spatially resolved energy dispersive spectroscopy (EDS) coupled to scanning electron microscopy measurements were used to investigate on the transient during the first stages of constant current Er doping. Depending on the applied current intensity, the voltage transient displays two very different behaviors, signature of two different chemical processes. The measurements show that, for equal transferred charge and identical porous silicon (PSi) layers, the applied current intensity also influences the final Er content. An interpretative model is proposed in order to describe the two distinct chemical processes. The results can be useful for a better control over the doping process

    Voltage Evolution and Electrochemical Behaviour of Soil Microbial Fuel Cells Operated in Different Quality Soils

    Get PDF
    The desire for a net-zero carbon future is a key driver for innovation in renewable energy. Amongst several emerging solutions, soil microbial fuel cells (SMFCs) pose an interesting addition as a low-cost, carbon–neutral technology. A full understanding on the electro-generative processes in SMFCs has, however, yet to be achieved, hindering the technology’s translation into practical applications. In this study, an in-depth investigation into the evolution of the output voltage generated by membrane-less, flat-plate SMFCs that accounts for the contribution of both the anode and cathode potential is provided for the first time, along with a study of the influence that organic matter content and porosity in soil has on voltage dynamics. Four stages in voltage evolution over time were observed, which depended on soil properties. The content of organic matter had the greatest effect, leading to an output voltage nearly-three times higher, when it increased from 10 % to 50 %. In this case, the anode potential reached a value of −450 mV, which prompted an exponential increase in the cathode potential and led to a power density of 68 mWm−2. The experimental findings were used to develop a novel computational model that, by predicting the electrochemical behaviour of the SMFC in different soils, becomes a powerful guide for operating strategies that can markedly enhance electricity generation. Consequently, this study sets the foundation for effective system optimisation and real applications.<br/

    analysis of photocurrent and capacitance of tio2 nanotube polyaniline hybrid composites synthesized through electroreduction of an aryldiazonium salt

    Get PDF
    TiO2 nanotube–polyaniline hybrid composites were synthesized using an aminophenyl under-layer electrochemically grafted on TiO2 obtaining improvements in photocurrent and capacitance

    Investigation on the Adsorption and Photooxidation of Glycerol at TiO2 Nanotubular Arrays

    Get PDF
    A study is presented on the adsorption of glycerol at TiO2as well as on its oxidative process during the contemporary water Photoelectro-splitting for hydrogen production. A deepening in the understanding on the working mechanism of the TiO2nanotubular photoanodes and on the interactions between glycerol and these structures has been gained through photocurrent tests, voltammetric scans, and EIS analysis. A range of wavelength of the incident radiation is investigated from 340 to 400 nm at which the effect of glycerol on the photocurrent is measured. Quantitative analysis of the EIS results is performed by the equivalent circuit approach

    Increase in 20–50 Hz (gamma frequencies) power spectrum and synchronization after chronic vagal nerve stimulation

    Get PDF
    Objective: Though vagus nerve stimulation (VNS) is an important option in pharmacoresistant epilepsy, its mechanism of action remains unclear. The observation that VNS desynchronised the EEG activity in animals suggested that this mechanism could be involved in VNS antiepileptic effects in humans. Indeed VNS decreases spiking bursts, whereas its effects on the EEG background remain uncertain. The objective of the present study is to investigate how VNS affects local and inter regional syncronization in different frequencies in pharmacoresistent partial epilepsy. Methods: Digital recordings acquired in 11 epileptic subjects 1 year and 1 week before VNS surgery were compared with that obtained 1 month and 1 year after VNS activation. Power spectrum and synchronization were then analyzed and compared with an epileptic group of 10 patients treated with AEDs only and with 9 non-epileptic patients. Results: VNS decreases the synchronization of theta frequencies (P!0.01), whereas it increases gamma power spectrum and synchronization (!0.001 and 0.01, respectively). Conclusions: The reduction of theta frequencies and the increase in power spectrum and synchronization of gamma bands can be related to VNS anticonvulsant mechanism. In addition, gamma modulation could also play a seizure-independent role in improving attentional performances. Significance: These results suggest that some antiepileptic mechanisms affected by VNS can be modulated by or be the reflection of EEG changes.2026-2036Pubblicat

    Assessing the impact of design factors on the performance of two miniature microbial fuel cells

    Get PDF
    Every day, wastewater treatment requires large amounts of electricity. Microbial Fuel Cells (MFCs) can convert wastewater treatment plants from net power consumers into energy neutral/positive systems by generating electricity from wastewaters. We investigate here the design factors that have major impacts on the performance of two miniature MFCs, and, consequently, of the resulting stack of MFCs. A versatile mathematical model is provided, which simulates the complex MFC system by integrating fluid dynamic principles with mass transport phenomena and (bio)electrochemical reactions. The model is used to support an in-depth study of the two MFCs, which differ for electrode spacing, anodic volume and fluid pattern within the anodic chamber, and to associate any difference in performance to design factors. Finally, system scale-up is demonstrated by generating stacks of the two MFCs. Thanks to the versatility of the model developed, this study becomes a guide for the effective development of future miniature MFCs

    Accurate dust temperature and star formation rate in the most luminous z>6z>6 quasar in the HYPerluminous quasars at the Epoch of ReionizatION (HYPERION) sample

    Get PDF
    We present ALMA Band 9 continuum observation of the ultraluminous quasi-stellar object (QSO) SDSS J0100+2802, providing a ∼10σ\sim 10\sigma detection at ∼670\sim 670 GHz. SDSS J0100+2802 is the brightest QSO with the most massive super massive black hole (SMBH) known at z>6z>6, and we study its dust spectral energy distribution in order to determine the dust properties and the star formation rate (SFR) of its host-galaxy. We obtain the most accurate estimate so far of the temperature, mass and emissivity index of the dust, having Tdust=48.4±2.3T_{\rm dust}=48.4\pm2.3 K, Mdust=(2.29±0.83)×107M_{\rm dust}=(2.29\pm0.83)\times 10^7 M⊙_\odot, β=2.63±0.23\beta=2.63\pm 0.23. This allows us to measure the SFR with the smallest statistical error for this QSO, SFR=265±32 M⊙yr−1=265\pm 32\ \rm M_\odot yr^{-1}. Our results enable us to evaluate the relative growth of the SMBH and host galaxy of J0100+2802, finding that the SMBH is dominating the process of BH-galaxy growth in this QSO at z=6.327z=6.327, when the Universe was 865865 Myr old. Such unprecedented constraints on the host galaxy SFR and dust temperature can only be obtained through high frequency observations, and highlight the importance of ALMA Band 9 to obtain a robust overview of the build-up of the first quasars' host galaxies at z>6z>6.Comment: 10 pages, 4 figures, 1 table. Accepted for publication in ApJ
    • …
    corecore