
DTD 5 ARTICLE IN PRESS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

CORE Metadata, citation and similar papers at core.ac.uk

Provided by P-arch
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97
ECTED P
ROOF

Increase in 20–50 Hz (gamma frequencies) power spectrum

and synchronization after chronic vagal nerve stimulation

F. Marrosua,*, F. Santonib, M. Puligheddua, L. Barberinia, A. Malecia,

F. Ennasa, M. Masciaa, G. Zanettib, A. Tuveria, G. Biggioc

aDipartimento di Scienze Neurologiche e Cardiovascolari, Policlinico Universitario, Università di Cagliari, SS 554, Bivio Sestu, 09042 Monserrato, Italy
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Abstract

Objective: Though vagus nerve stimulation (VNS) is an important option in pharmacoresistant epilepsy, its mechanism of action remains

unclear. The observation that VNS desynchronised the EEG activity in animals suggested that this mechanism could be involved in VNS

antiepileptic effects in humans. Indeed VNS decreases spiking bursts, whereas its effects on the EEG background remain uncertain. The

objective of the present study is to investigate how VNS affects local and inter regional syncronization in different frequencies in

pharmacoresistent partial epilepsy.

Methods: Digital recordings acquired in 11 epileptic subjects 1 year and 1 week before VNS surgery were compared with that obtained

1 month and 1 year after VNS activation. Power spectrum and synchronization were then analyzed and compared with an epileptic group of

10 patients treated with AEDs only and with 9 non-epileptic patients.

Results: VNS decreases the synchronization of theta frequencies (P!0.01), whereas it increases gamma power spectrum and

synchronization (!0.001 and 0.01, respectively).

Conclusions: The reduction of theta frequencies and the increase in power spectrum and synchronization of gamma bands can be related to

VNS anticonvulsant mechanism. In addition, gamma modulation could also play a seizure-independent role in improving attentional

performances.

Significance: These results suggest that some antiepileptic mechanisms affected by VNS can be modulated by or be the reflection of EEG

changes.

q 2005 Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology.

Keywords: Vagus nerve stimulation (VNS); Partial epilepsy; Digital EEG; Power spectrum frequency analysis; Intra–inter hemispheric synchronization

analysis; Gamma activity
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1. Introduction

The use of long-term vagus nerve stimulation (VNS)

with intermittent electrical current was introduced for the

treatment of refractory epilepsy first in adults (Binnie, 2000;

Handforth et al., 1988; Labar et al., 1998; Morris and

Mueller, 1999; Salinsky, 1995) and subsequently in children
UN
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(Hornig et al., 1997; Patwardhan et al., 2000) and in older

individuals (Sirven et al., 2000). VNS reduces seizure

frequency by 50% in 30–40% of patients with severe

epilepsy (Ben-Menachem, 2002) and represents the only

non-pharmacological, non-surgical option for epilepsy

treatment (Binnie, 2000). The mechanism of the therapeutic

action of VNS remains unclear, however. Although its

efficacy has been suggested to result from complex

interactions of biochemical and electrical events (Beckstead

and Norgren, 1979; Kalia and Sullivan, 1982; Rutecki,

1990), few studies have examined the effects of VNS on

the EEG.
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Early investigations showed that VNS at a frequency of

24–50 Hz induced rapid desynchronized activity in the

orbitofrontal cortex and cerebellum both in intact and in

‘encephale isolè’ cats (Bremer and Bonnet, 1951; Zanchetti

et al., 1952). Further studies found that vagal stimulation

at 30 Hz induced EEG desynchronization in cats (Magnes

et al., 1961) in a manner dependent on the histological

composition of the nerve fibers receiving the electrode

impulses. This effect is similar to that observed after

electrical stimulation of peripheral nerves (Pompeiano and

Swett, 1962). The pattern and target of stimulation are

important determinants of the effect observed, however,

given that desynchronization results from high-frequency

stimulation of fibers with a low level of myelination,

whereas synchronization occurs in response to low-

frequency stimulation of highly myelinated fibers (Chase

et al., 1967).

These experimental observations spurred several studies

that attempted to elucidate whether VNS induces similar

bioelectrical effects in humans. The first such study failed to

demonstrate substantial differences in recordings obtained

during wakefulness, sleep, or anaesthesia in epileptic

individuals examined before and after VNS activation

(Hammond et al., 1993). Another study detected a stable

rate of interictal spiking activity after the delivery of trains

of electrical impulses by VNS (Salinsky and Burchiel,

1993). However, more recent studies of the effects of

chronic VNS with long-term EEG monitoring have revealed

a progressive reduction in the frequency and duration of

sharp waves as well as a substantial decrease in interictal

spiking (Koo, 2002; Kuba et al., 2002)

These studies thus suggest that VNS modifies interictal

activity, although it has remained unclear whether

modification of the EEG pattern by long-term VNS plays

a role in the observed therapeutic action. In particular, it

remains scarcely investigated whether VNS modulates the

spectrum of EEG frequency and if such activity can be

related with variations of spiking and seizure episodes.

In addition, it is of interest to investigate possible relations

between the inter and intrahemisferic synchronization of

the EEG frequency bands, by assessing the coherences of

the EEG signals over the recording areas. As the procedure

of ‘generalized synchronization’ (Rulkov et al., 1995)

studies coupled identical systems to coupled systems with

different parameters, these investigations are expected

particularly useful in assessing coupled EEG signals.

Generalized synchronization occurs between two dynamical

systems X and Y (a driver and a response) when the state of

response system is a generalized function of the state of the

driver [i.e. YZJ (X); in Appendix A for more details].

This method might allow for relevant information on

possible similar features among EEG signals in different

cortical areas.

As such observations might contribute not only to

investigate cortical rhythms in relation to the epileptic

discharges, but also can improve some basic knowledge of
INPH 2003962—11/7/2005—09:44—BELLA—156284—XML MODEL 5 – pp. 1–11
general VNS mechanism, we have now examined the effect

of VNS on the EEG frequency profile by comparing the

average of the power spectra recorded 1 year and 1 week

before VNS activation with that obtained, respectively,

1 month and 1 year after VNS therapeutic activation.

A group of epileptic subjects affected by partial seizures

and treated with AEDs only and another group of

non-epileptic patients served as control.
ED P
ROOF

2. Methods

2.1. Patient selection

The patients for the study were selected from 1420

individuals who attended the Epilepsy Diagnostic and

Treatment Centre of Cagliari (Italy). From 16 patients

affected by drug-resistant partial epilepsy who were recently

implanted with a VNS device, we selected eleven subjects

(six men, five women) ranging in age from 26 to 44 years

(mean, 33.5 years) affected by non-lesional epilepsy ruling

out five subjects affected by lesional epilepsy. Although the

number of the patients enrolled in the study was relatively

small, the group was homogeneous in that the age,

the treatment, and the general characteristics of the seizures

were similar for all individuals. The right hemisphere was

considered to be the most likely site of the epileptic focus in

seven subjects while the left side was primarily involved in

four patients on the basis of several EEG recordings and

reports from the patients themselves or from family

members who witnessed ictal events. We also obtained

ictal video-EEG recordings for nine patients. In addition, the

focal activity was confirmed by a 24 h Holter EEG

recording for the other patients.

Each of the patients had been monitored for several years

(mean, 5.2 years) by the outpatient service before the

decision to implant a VNS device was taken. The main

selection criteria for inclusion in the study were: a relative

stability of clinical features related to interictal EEG

activity, the resistance to classical first- and second-line

antiepileptic drugs (AEDs) assessed monthly for optimal

range, the normal findings of neurological and psychiatric

evaluations, and the lack of abnormalities of cerebral

structure as revealed by a recent MRI scan. The possibility

and priority of treatment with a VNS device were discussed

with the patients, family members, and the institutional

ethical ad hoc committee. Informed consent was obtained

from the patients and their relatives after the nature of the

procedure had been fully explained and approved by

institutional review.

The characteristics of the selected patients are

summarized in Table 1. The change in seizure frequency

was calculated as: [(number of seizures after VNS implant

per trimester)K(number of seizures before implant per

trimester)]/(number of seizures before implant per

trimester) (Labar et al., 1998). Epileptogenic activity was
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Table 1

Characteristics of epileptic patients and effect of VNS on seizure frequency

Patient Age

(years)

Sex Age at seizure

onset (years)

AEDs Estimated site

of focal IEDs

Pre-VNS seizure

frequency

(/trimester)

Post-VNS seizure

frequency

(/trimester)

VNS-induced

change in seizure

frequency

(% after 1 year)

1 44 F 14 CBZCPRI Right FT 164 27 (C83)

2 32 M 7 CBZCFELB Left F 139 37 (C75)

3 26 M 19 CBZCVA Right F 102 18 (C83)

4 28 M 18 CBZCLMT Right FT 120 75 (C37)

5 37 M 7 CBZCLMT Right FT 184 122 (C33)

6 29 F 8 CBZCLMT Left F 108 89 (C17)

7 33 M 17 CBZCVA Right FT 202 141 (C30)

8 34 F 3 CBZ Right F 228 198 (C13)

9 44 M 6 CBZCVA Right FT 196 212 (K0.8)

10 33 F 10 VACTOP Left TP 98 61 (C37)

11 29 M 7 CBZCLMT Left FT 122 85 (C30)

Pre-VNS seizure frequency is the mean of the value obtained in the trimester immediately before implantation of the VNS device and that obtained 1 year

previously. Post-VNS seizure frequency is the mean of the value obtained in the last trimester after 1 year from VNS implantation.VNS-induced change in

seizure frequency (% after 1 year) indicates the percentage of seizure decrease (negative number) or increase (positive number) after 1 year of vagus

stimulation. CBZ, carbamazepine; PRI, primidone; FELB, felbamate; VA, Valproic Acid; LMT, lamotrigine; TOP, topiramate. FT, fronto-temporal lobe; TP,

temporal-parietal lobe; F, frontal lobe.
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defined by the number of interictal epileptiform discharges

(IEDs), including isolated spikes, spikes and slow waves,

spikes-waves, and polyspikes-waves during 40 min

recording interpreted by a neurophysiologist blinded of

the experimental design (MM). The approved protocol

included no changes in anticonvulsant treatment during the

trial, unless serious side effects were manifested.

In order to detect possible early modifications in power

spectra after VNS, we calculated the data obtained 1 month

after the implant and 2 months after surgery when VNS was

switched at therapeutic values. Moreover, given that the

studies reporting real therapeutic advantage for different

parameters of VNS are still limited and not systematic, no

further attempt to modify the general settings (e.g. shift to

‘rapid cycling’) has been done during the entire trial.
UNCORRECTable 2

Characteristics of epileptic patients treated with AEDs only

Patient Age

(years)

Sex Age at seizure

onset (years)

AEDs Estimate

of focal

1 35 F 24 CBZCVA Left T

2 39 M 18 CBZCLMT Right PT

3 46 M 28 CBZ Left FT

4 23 M 15 CBZ Right F

5 34 M 11 TOP Right PT

6 42 F 32 LMTCLEV Right FT

7 27 M 20 CBZ Left FT

8 33 F 26 CBZCLMT Right FP

9 31 M 14 CBZ Left F

10 28 F 17 VACLEV Left TP

Pre-AEDs adjustment seizure frequency is the mean of the value obtained in the t

obtained 1 year previously. Post-AEDs adjustment seizure frequency is the mean o

AEDs-induced change in seizure frequency (% after 1 year) indicates the percenta

PRI, primidone; LEV, levetiracetam; VA, valproic acid; LMT, lamotrigine; TOP, t

lobe; F, frontal lobe.

CLINPH 2003962—11/7/2005—09:44—BELLA—156284—XML MODEL 5 – pp. 1–11
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ROOFTo take into account possible variations in EEG pattern

related to an efficacious AEDs effect during 1 year period,

we examined a separate group of 10 epileptic subjects

affected by partial epilepsy (mean age, 34 years) who were

admitted to the Regional Centre Against Epileptic Disorders

for an adjustment of the treatment. Though these patients

differed from VNS group in that they showed a less severe

form of epilepsy, most of the drugs administered, either de

novo or adjusted for the optimal range, were similar to

VNS group (Tables 1 and 2). In particular, carbamazepine

(CBZ) which represents by far the most used AED, was

administered at doses between 1000 and 1600 mg/day,

Valproic Acid (VPA) was administered at daily doses

between 800 and 1500 mg following the indications

obtained from seric concentrations. Lamotrigine (LMT)
d site

IEDs

Pre-AEDs

adjustment seizure

frequency

(/trimester)

Post-AEDs

adjustment seizure

frequency

(/trimester)

AEDs-adjustment

induced change in

seizure frequency

(% after 1 year)

15 4 (C73)

21 6 (C71)

16 2 (C87.5)

8 0 (C100)

6 2 (C66)

22 4 (C82)

11 3 (C73)

7 0 (C100)

14 6 (C57)

13 7 (C46)

rimester immediately before the adjustment of the AEDs treatment and that

f the value obtained in the last trimester after 1 year from AEDs adjustment

ge of seizure decrease after 1 year AEDs adjustment. CBZ, carbamazepine;

opiramate; T, temporal lobe FT, fronto-temporal lobe; TP, temporal-parietal
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Fig. 1. Procedure for calculation of intra- and interhemispheric

synchronization. The ipsilateral or contralateral synchronization index

was obtained by comparison of EEG data recorded by the test electrode (!)

with those recorded by electrodes positioned on the same or contralateral

side. The arrows indicate that the same procedure was applied for 19

electrode positions.
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administration in both epileptic groups varied from 200 to

400 mg. Less used drugs were Topiramate (TOP), utilized at

250 mg a day, primidone (PRI) administered at 200 mg a

day, levetiracetam (LEV) used at 3000 mg a day and

felbamate given at 2400 mg a day.

2.2. Implantation of the VNS device

A vagus nerve stimulator (model 100 NCP Pulse

Generator; Cyberonics, Houston, TX), comprising a pulse

generator programmable by telemetry, was implanted in the

upper left side of the chest of each subject by a

neurosurgeon. A lead terminating in a double-coiled

electrode was positioned on the cervical portion of the left

vagus nerve. The stimulator was tested before implantation

by serial connection to an IBM-compatible laptop computer.

The position of the stimulator was checked after surgery by

a routine chest X-ray. The device was switched on at an

initial current of 0.25 mA after 1 week. The current was

increased by 0.25 mA each week until the value of 2 mA

was achieved. Stimulation of patients 2 and 9 was

subsequently reduced to 1.75 mA because of a painful

sensation that developed in the throat region after delivery

of a current of 2 mA. The other parameters conformed to the

‘high stimulation’ criteria (Binnie, 2000); the stimulation

cycle was 30 s on followed by 5 min off, the pulse duration

was 500 ms, and the signal frequency was 30 Hz. Once set,

these parameters were maintained throughout the duration

of the study.

2.3. EEG analysis

EEG data were recorded from the scalp with a 19

non-polarizable Ag–AgCl electrode-cap using the BQS 98

System Micromed (Mogliano, Veneto, Italy). The

impedance was !5 kU, sampling frequency 256 Hz, 16

bit resolution. All electrophysiological signals were

transduced by BQS98 System Micromed alternating current

(A/C) amplifiers and an amplifier sensitivity of 5 was used

for EEG (50 mV, 0.5 s duration calibration) corresponding

to a gain of 50,000 with half-amp low and high bandpass

filters set at 0.03 and 70 Hz, respectively. Monopolar left

and right electroculograms (EOG) and bipolar chin-check

electromyograms (EMG) were also recorded in order to

detect possible sleepiness and the 10/20-systems was used

(1986). The reference electrode was placed on the nose and

the ground electrode on the forehead.. The signals were

stored on the hard disk for off-line analysis. Five samples

corresponding to 75 s per trial were randomly selected for

each patient from a 40 min EEG recording. These samples

were screened for eye blinks, horizontal–vertical eye

movements, muscle artefacts and possible sleepiness by

visual inspection and were analyzed by averaging the

results obtained in each trial. The EEG signals were

filtered with elliptical filter banks to obtain the optimal

resolution of broadband parameters for delta (0.5–3 Hz),
INPH 2003962—11/7/2005—09:44—BELLA—156284—XML MODEL 5 – pp. 1–11
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theta (4–7.5 Hz), alpha (8–12 Hz), beta (13–20 Hz), and

gamma (20–50 Hz) frequencies. Given that synchronization

analysis requires a zero-phase filtering distortion, we

performed a further procedure of forward–backward

filtering (Gustafsson, 1996).

Given that the EEG records are based on the 10/20

system with 19 electrodes, the power spectrum was

analyzed at each electrode location for each of the 5

frequency bands selected for the experimental design. The

mean of the squared Fourier amplitude coefficients was

determined. Coherence, defined as the cross spectral density

function normalized by individual auto-spectral density

functions (Nunez et al., 1997) and a robust nonlinear

interdependence estimator (N) were calculated in order to

assess the generalized synchronization among all channels

(Quian Quiroga et al., 2000).

For calculation of /N/, a reconstruction of state spaces of

each signal was performed with an embedding dimension

(/m/) related to the frequency band to be studied. We used

the method of Liangyue (Liangyue, 1997) to find the

minimum embedded dimension for each frequency band

and we set mZ10 for lower bands (delta, theta and alpha)

and mZ6 for beta and gamma band. A time lag (t) of 2 was

chosen in order to measure frequencies of !128 Hz.

The number of nearest neighbours (k) was set to 10 and a

Theiler correction for temporal correlation (w) was set to 20.

These settings have been used in order to increase the

sensitivity for possible underlying synchronization

according to non-linearity studies applied to EEG signals

(Quian Quiroga et al., 2002).

Both power spectrum and synchronization data were

calculated for non-overlapping epochs (1 s at 256 samples).

To reduce the amount of data, we considered short- and

long-range synchronization according to the location of the

electrodes in the same hemisphere or in the contra lateral

areas (Fig. 1). The data obtained were spatially arranged

following the EEG montage. To characterize regional

differences, we defined five region-based groups of

electrode-pair combinations and the absolute band power



F
Fig. 2. Regions of interest for synchronization analysis. L1: left Fp1-F7, F7-T3, T3-T5, T5-O1. L2: left Fp1-F3, F3-C3, C3-P3, P3-O1. C: central Fz-Cz, Cz-Pz,

Pz-Oz. R1: right Fp2-F8, F8-T4, T4-T6, T6-O2. R2: right Fp2-F4, F4-C4, C4-P4, P4-O2.

F. Marrosu et al. / Clinical Neurophysiology xx (xxxx) 1–11 5

DTD 5 ARTICLE IN PRESS

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531
for each band of these combinations was used as the

dependent vector for comparisons (Fig. 2). The power

spectra obtained after 1 year of VNS stimulation were

compared with the average of those obtained 1 year and

1 week before implantation of the VNS device.
T

Fig. 3. power spectra of gamma bands in the regions of interest for epileptic

patients before and after VNS. Power spectrum (mV2/sGSD) are reported in

the x axis, the regions assessed L1, L2, C, R1 and R2 are reported in the y

axis. Statistical significance: *P!0.05, **P!0.01, ***P!0.001.
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2.4. Data analysis

Analysis of variance (ANOVA) for repeated measures

with the Huynh–Feldt correction where appropriate and

the post hoc Bonferroni–Duhn test were used for

comparisons of power spectra and synchronization within

and between groups. Because of spatial correlation

between the 5 zones, /P/ values have been corrected

for multiple testing with false discovery rate (FDR)

method (Benjamini and Hochberg, 1995) instead of using

the too conservative Bonferroni correction, which is

better suitable for assessing global variations. Alpha level

was set to 0.05. A normal distribution of power

spectra and of N was indicated by application of

Lilliefors modified Kolmogorov–Smirnov test (Dallal

and Wilkinson, 1986). Coherence data were subjected

to Fisher’s transformation, yielding z-coherences with an

approximately normal distribution. All calculations were

performed with The Matlab toolboxes (The Mathworks,

Natick, MA, USA).

The relation between the modification of percentage

changes in seizure frequency and in power spectra and

synchronization distribution was assessed from a bivariate

scattergram plot and Fisher’s R to Z two-tailed test

(StatView Software, Abacus Concepts, Berkeley, CA,

USA). A P value of !0.05 was considered statistically

significant.
CLINPH 2003962—11/7/2005—09:44—BELLA—156284—XML MODEL 5 – pp. 1–11
ED P
ROO3. Results

Comparison of the power spectrum of each frequency

band in the regions of interest for the EEGs recorded 1 year

and 1 week, respectively, before implantation of the VNS

device as well as 1 month after VNS activation at values of

1.25 mA, revealed neither quantitative nor qualitative

differences (not shown). Furthermore, whereas the power

spectra for the delta, theta, alpha, and beta frequency bands

were not significantly affected by VNS in the epileptic

patients, that for the gamma band was increased in both

hemispheres after VNS, with this effect being more

pronounced in the right hemisphere (Fig. 3). In contrast,

after 1 year the epileptic control group failed to show

modifications in the power spectra profile of all bands

though a small increase in gamma power spectrum at R1

and R2 was observed (Table 3).
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Table 3

Power spectra of frequency bands in the regions of interest for epileptic patients before and after VNS and for control subjects before and after AEDs change

Band Region EP AEDs only Pre EP AEDs only Post Epileptic patients

pre-VNS

Epileptic patients

post-VNS

Delta L1 73.0G11.9 87.9G5.0 90.0G10.6 84.0G7.2

L2 75.7G11.4 66.0G8.9 86.0G14.8 76.1G8.8

C 43.6G7.7 38.9G3.4 49.0G8.2 33.4G3.7

R2 81.9G5.7 72.2G14.4 80.0G7.2 94.2G13.3

R1 91.0G11.3 80.8G13.6 96.0G10.1 123.1G15.1

Theta L1 54.2G12.5 52.5G11.8 101.0G19.6 72.0G10.9

L2 56.8G12.2 50.8G11.9 90.0G13.8 81.7G11.9

C 46.9G11.0 36.9G10.9 79.0G14.8 50.4G7.4

R2 61.7G12.0 53.6G12.6 100.8G16.7 89.3G10.9

R1 67.9G11.7 64.3G12.3 107.0G17.2 82.4G11.9

Alpha L1 70.0G13.3 44.7G10.1 67.0G13.5 43.8G9.0

L2 61.4G12.0 61.7G9.3 59.0G11.7 52.7G11.1

C 38.6G6.6 34.6G9.0 32.0G8.5 31.5G8.0

R2 58.4G12.7 59.9G9.8 58.0G11.9 44.5G10.6

R1 56.1G13.0 44.8G12.8 61.0G11.4 41.7G9.5

Beta L1 17.6G3.1 18.9G2.8 21.0G3.7 22.1G3.2

L2 16.9G5.6 12.8G2.6 17.0G3.7 21.0G2.9

C 11.3G2.8 19.7G3.3 13.0G3.2 12.1G1.9

R2 18.5G5.2 20.0G4.6 17.0G4.0 20.0G2.7

R1 18.6G4.5 18.9G3.5 19.0G3.2 24.0G3.2

Gamma L1 9.7G4.0 11.5G3.6 17.0G3.4 21.9G4.0a

L2 6.5G2.0 7.9G2.8 8.9G1.9 13.0G2.9b

C 4.6G1.1 5.0G1.3 5.0G1.1 4.9G1.1

R2 7.3G1.4 7.9G2.4 5.9G1.1 13.1G1.9c

R1 10.7G3.0 12.2G3.4 11.0G2.3 27.0G3.7c

EP-AEDs Pre and EP-AEDs-Post, power spectra values in the control group treated with AEDs only (basal values) and the same group assessed 1 year after

AEDs switch. Values are calculated as mean between basal (EP-AEDs-Pre) and after 1 year from the switch (AEDs-Post). EP Pre-VNS values for epileptic

patients as mean average of the power spectra determination 1 year and 1 week before VNS implant. EP Post-VNS spectra values obtained after 1 year from the

switch of O1.25 mA (following therapeutic values of VNS). Values expressed as mV2/sGSD values are assessed with analysis of variance (ANOVA): a, P!0.

05; b, P! 0.01; c, P!0.001.
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Moreover, after 1 year of VNS activation, in addition to

the general increase in gamma power spectrum,

VNS-treated group showed an increased coherence for

gamma signals at the R1 region of the right hemisphere,

confirmed by statistical analysis based on the interdepen-

dence factor N (Table 4). Although VNS failed to decrease

theta power spectrum (Table 2), this group showed a

significant reduction in the inter- and intrahemispheric
UNCORRE
Table 4

Effects of VNS on intra- and interhemispheric synchronization of EEG activity f

Region Coherence

Band VNS-induced

change (%)

P

L1

L2 Inter

Intra

C Inter Theta K4.4 0

Intra Theta K6.2 0

R2 Inter

R1 Inter

Intra Gamma 4.9 0

The change in coherence or interdependence (N) obtained 1 year after VNS switch

week before surgery P!0.05 respect baseline.

INPH 2003962—11/7/2005—09:44—BELLA—156284—XML MODEL 5 – pp. 1–11
EDcoherence for this band in the central (C) region (Table 4).

Again, the VNS-induced decrease in synchronization for the

theta band in the C region was confirmed by analysis of N.

In the AEDs group the synchronization analysis showed

a decrease in both coherences and N after 1 year for delta,

theta and gamma bands (Table 5). The correlation between

the percentage changes in seizure frequency pattern

distribution and the power spectra and synchronization
or the regions of interest

Interdependence measure (N)

Band VNS-induced

change (%)

P

Beta K1.3 0.027

.041 Theta K4.8 0.021

Beta K2.1 0.035

.026 Theta K5.3 0.013

Beta K2.2 0.043

Beta K1.6 0.037

Gamma 3.2 0.039

.028 Gamma 4.3 0.01

(O1.25 mA) is compared with mean baseline values between 1 year and 1
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Table 5

AEDs-group: effects of AEDs on intra- and interhemispheric synchronization of EEG activity for the regions of interest of epileptic controls

Region Coherence Interdependence measure (N)

Band AEDs-induced

change (%)

P Band AEDs-induced

change (%)

P

L1 Inter Gamma K0.29 0.043 Gamma K0.54 0.018

Intra

L2 Inter

Intra Delta K1.1 0.042

Theta K0.9 0.034

C

R2 Inter

Intra Delta K1.4 0.031 Delta K1.3 0.028

R1

The change in coherence or interdependence (N) obtained 1 year after AEDs change is compared with the basal valuesP!0.05 respect basal values.
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distribution was not significant in both groups, thus

suggesting that the improvement in seizure frequency was

not proportionally related with these parameters (not

shown). No variations were observed in spectra profiles

and coherence in the group of non-epileptic subjects after 1

year (Table 2). Furthermore, the number of IEDs was not

significantly modified by VNS.
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4. Discussion

We have shown that VNS increases the power spectrum

as well as the intra- and interhemispheric synchronization of

EEG frequencies between 20 and 50 Hz (gamma band)

(Fig. 3), whereas it reduces the synchronization of

frequencies under 20 Hz without substantially affecting

their power spectra. At variance, the control group showed

similar power spectra after 1 year of AEDs adjustment

(Table 3).

Though VNS failed to show acute modifications

following on and off periods of activation (Salinski and

Burchiel, 1993), experimental evidences have suggested

that electrical stimulation induced modification of brain

rhythms via the nucleus tractus solitarius (NTS), which is

the main site of visceral afferent complex termination and is

regulated by cholinergic inputs (Beckstead and Norgren,

1979; Kalia and Sullivan, 1982; Rutecki, 1990; Schacther

and Saper, 1998). However, the extended network of NTS

connections (Saper, 1995) might mediate the biochemical

and electrical effects of VNS through several mechanisms.

Given that the NTS does not directly innervate cortical

areas, chronic VNS-induced EEG changes are likely

mediated by modulation of pathways indirectly involved

in the genesis of cortical rhythms. Indeed, the parabrachial

nucleus, which receives NTS efferents (Quattrocchi et al.,

1998) projects to several thalamic nuclei that contribute to

EEG activity and receives an important input from the locus

coeruleus (LC). In addition, the integrity of the LC is

important for the antiepileptic, desynchronizing, and

arousal-promoting effects of VNS (Krahl et al., 1998).
CLINPH 2003962—11/7/2005—09:44—BELLA—156284—XML MODEL 5 – pp. 1–11
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Moreover, experimental stimulation of vagal components of

the LC by injection of the cholinergic agonist bethanechol

into the LC was found to increase cortical desynchroniza-

tion and to reduce the contribution of slow frequencies to

the EEG (Berridge and Foote, 1991). Although such studies

cannot be readily replicated in humans, in addition to its

antiepileptic effect VNS affects EEG desynchronization

through the entire sleep-waking cycle by increasing the

proportion of rapid eye movements (REM) sleep and

decreasing daytime sleepiness (Galli et al., 2003; Malow

et al., 2001). Our present results confirm that chronic VNS

increases intra-interhemispheric desynchronization of cor-

tical rhythms at frequencies of !20 Hz. These results are in

accordance with previous experimental and clinical data. It

has been shown, for instance, that VNS suppress sleep

spindling in cats whereas it attenuates synchronized

activities (Chase et al., 1967l; Zanchetti et al., 1952).

Though in initial investigations EEG background seemed

unaffected by VNS (Hammond et al., 1992; Salinski and

Burchiel, 1993) in more recent studies it has been suggested

a ‘cortical activation among the effects of VNS’ as it

promotes REM sleep and increases alertness without any

change in overnight sleep architecture (Malow et al., 2001).

The VNS-induced desynchronization described in cats

after VNS, (Magnes et al., 1961), represents a finding which

apparently seems to contradict the increased synchroniza-

tion of gamma frequency bands in humans. However, it is

difficult to compare these experimental settings given the

methodological differences in stimulus parameters and in

species population and the different acquisition and

processing of EEG signals. Together, the existence of a

single mechanism responsible both for the decreased

synchronization of frequency bands under 20 Hz and for

the marked increase in the power spectrum and

synchronization of the gamma frequency band appears

difficult to council.

Gamma activity has previously been found to be

increased in experimental models of epilepsy and in

epileptic patients (Mackenzie et al., 2002; Willoughby

et al., 2003). Consistent with these findings, the epileptic
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patients in the present study showed an increased power

spectrum of the gamma frequency band compared with that

observed in non-epileptic subjects. Moreover, the VNS

group manifested a further increase in this parameter after 1

year of stimulation.

It has been shown that a reduction in synchronization of

the gamma band has been detected immediately before an

epileptic seizure (Mormann et al., 2003). In addition,

experimental data suggest that an antisynchronizing

gamma-mediated mechanism may antagonize ictal and

interictal epileptogenic spiking activity (Medvedev, 2002)

as these figures are proportionally inverse. Accordingly, the

increases in the power spectrum of the gamma band

observed in response to VNS in the present study might

be hypothesized as a kind of protective effect. The

performance of standard EEG, recorded for only 40 min in

the present study,was not optimally suited to detect

significant variations in spiking activity. However, previous

studies with longer periods of EEG monitoring have shown

that long-term VNS induces a delay in interspiking activity

and a reduction in the frequency of epileptic interictal spikes

(Koo, 2001; Kuba et al., 2002; Olejniczak et al., 2001),

though a recent study which evaluated in children whether

spike rates are useful as an outcome parameter following

VNS yielded contrasting results (Ebus et al., 2004).

Chronic VNS has been found to enhance recognition

memory and memory storage in humans (Clark et al., 1999)

and to increase cortical inhibition by up-regulating the

cortical density of g-aminobutyric acid type A (GABAA)

receptors, as assessed by [123I] iomazenil SPECT, in

individuals with drug-resistant partial epilepsy (Marrosu

et al., 2003). These results suggest that VNS may modulate

neuronal plasticity. Moreover, given that modifications of

GABAA receptors affect brain excitability, it seems likely

that this receptor modulation might also be involved in

changes of bioelectrical activity.

Recent studies have suggested that local gamma rhythms

are dependent on the activation of GABAA receptors in

perisomatic neural networks whose synaptic inputs

synchronize the interneuronal activity in the gamma range

(Jefferys et al., 1996; Traub et al., 2003). Though these

studies are performed on neuronal models represented by

hippocampal slices, the possibility that the GABAergic

inhibition in a subset of interneurons into pyramidal cells

modulates gamma activity (Wendling et al., 2002) can be

hypothesized also in other brain areas that share high

density GABAA receptors. Given that VNS increases the

metabolic rate in the thalamus (Henry et al., 1998, 1999,

2004; Ko et al., 1996) the long-term administration of such

stimulation might affect thalamocortical regulation of brain

circuitry involved in the modulation of EEG rhythms. It is

likely that this effect is part of the antiepileptic mechanism,

and that it is induced after a medium-long delay from VNS

activation, since both clinical activity and power spectrum

assessed 1 month after settling the device at 1.25 mA failed
INPH 2003962—11/7/2005—09:44—BELLA—156284—XML MODEL 5 – pp. 1–11
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to show significant differences in comparison with these

calculated for the pre-implant periods (not shown).

The modulation of the GABAA receptors by VNS might

be relevant for the regulation of cortical rhythms, given that

the nucleus reticularis thalami contains a large proportion

of GABAAergic neurons and acts as a pacemaker of

thalamocortical volleys (Gibbs et al., 1996). Though VNS

activates both thalami and this mechanism represents the

most likely candidate to the regulation of oscillatory brain

activities, our data show an asymmetric prevalence of

gamma bands over the right hemisphere, regardless the

putative epileptogenic side. Although the lateralized gamma

power spectrum can be interpreted as a casual finding,

nonetheless the peculiar pattern of gamma profiles detected

in the VNS group might suggest a more direct mechanism.

Indeed, it has been observed that VNS induces bilateral

thalamo-cortical blood flow increase both acutely and

chronically (Henry et al., 1998, 1999; Ko et al., 1996),

and that the left position of VNS implant enhances an

additional chronic increase in the right inferior postcentral

gyrus (Henry et al., 2004). Though it is difficult to directly

correlate minute variations in blood flow with EEG changes,

the chronic blood flow asymmetry could play a role in

modifying synaptic plasticity in these areas. However, the

role of the AEDs in determining the EEG changes deserves

some comment. Indeed, it cannot be completely ruled out that

the epileptic groups receiving the same AEDs may show

different power spectra for complex AEDs–VNS interactions

(e.g. VNS acts by enhancing AEDs–GABA related

mechanisms) rather than by a VNS ‘mechanistic’ effect,

though the group treated with AEDs only failed to show

significant changes in frequency profiles (Tables 3 and 5).

In addition, several studies reported a time-dependent

improvement of the quality of life and mood among the

patients treated with VNS (Ben-Menachem, 2002; Cramer,

2001; Elger et al., 2000; Harden et al., 2000 for a review)

and recent investigations have suggested a potential effect

of VNS in the treatment of depression (Kosel and

Schlaepfer, 2003). Given that the modulation of gamma

bands plays a role in linking different brain areas involved in

object representation as well as in unifying coherent

percepts and in focusing the top-down flow of attentional

mechanisms (Bertrand and Tallon-Baudry, 2000) it could be

suggested that, perhaps independently by the antiepileptic

mechanism, these effects might contribute to the

improvement of the quality of life in epileptic subjects as

well as in depressed patients.

Though it is not currently possible to hypothesize the

exact role played by the modifications of the frequency

power spectrum and synchronization in VNS antiepileptic

effects and the small sample of the patients selected for the

present report does not allow for sufficient statistical

analysis, these preliminary results suggest that a time-

dependent VNS-mediated mechanism can modulate the

expression of several brain rhythms possibly involved

in more than the seizure control. Larger prospective
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set a critical investigation of these aspects of VNS treatment.
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Appendix A

Embedded synchronization in EEG signals is performed

by adapting the non-linear synchronization measure intro-

duced by Quian Quiroga et al. (2002) from the work of

Arnhold et al. (1999). Unlike coherence, cross-correlation

and mutual information, this measure is non-symmetric and

yields more detailed information about the ‘direction’ of

interdependence. Briefly, in order to detect generalized

synchronization we synthesize the general principles.

Let xZ(x1,.,xN) and yZ(y1,.,yN) two different

simultaneously observed EEG time sequences opportunely

sampled related to dynamical systems X and Y.

Time-delay embedding in a m-dimensional phase-space

leads to vectors xnZ ðxn;.; xnKðmK1ÞtÞ and ynZ ðyn;.;

ynKðmK1ÞtÞ where t indicates the time delay.

Let rn,j and Sn,j, jZ1,.,k the time indices of the k nearest

neighbours of xn and yn, respectively. Thus, the first neighbour

distances fromxnaredðXÞð1Þn hjjxnKxrn;1 jjZminqjjxnKxqjj,

dðXÞð2Þn hjjxnKxrn;2 jjZminqsrn;1
jjxnKxqjj, etc., where

kxKx 0k is the ‘Euclidean distance’ in delay space. For

each xn and yn, the squared mean Euclidean distance to its k

closest neighbours is defined as

RðkÞ
n ðXÞZ

1

k

Xk

jZ1

jjxn Kxrn;j jj (1)

and the conditional mean square Euclidean distance,

conditioned on the closest neighbour times in the time series

Y, is

RðkÞ
n ðXjYÞZ

1

k

Xk

jZ1

jjxn Kxsn;j jj (2)

Note that in (2), instead of summing over nearest

neighbours as in (1), we sum over points whose equal time

partners are nearest neighbours of yn. The same can be done

symmetrically for yn obtaining

RðkÞ
n ðYÞZ

1

k

Xk

jZ1

jjyn Kysn;j jj (3)
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and

RðkÞ
n ðYjXÞZ

1

k

Xk

jZ1

jjyn Kyrn;j jj: (4)

Introducing the average distance between the reference

vector and all other vectors in the data set {Xn}

RðNK1Þ
n ðXÞhRnðXÞZ

1

NK1

XNK1

mZ1

kxn Kxmk; (5)

we can observe that, if X and Y are strongly coupled we have

RðkÞ
n ðXjYÞzRðkÞ

n ðXÞ/RnðXÞ while if they are independent

RðkÞ
n ðXjYÞzRnðXÞ[RðkÞ

n ðXÞ.
Thus, we define local and global interdependence

measure, respectively as

NðkÞ
n ðXjYÞZ

RnðXÞKRðkÞ
n ðXjYÞ

RnðXÞ
(6)

and

NðkÞðXjYÞh
1

N

XN

nZ1

NðkÞ
n ðXjYÞ

Z
1

N

XN

nZ1

RnðXÞKRðkÞ
n ðXjYÞ

RnðXÞ
(7)

This measure is normalized in the sense that

N(k)(XjY)Z0 in case of uncorrelated signal and N(k)(XjY)

z1 in the case of perfect coupling (in general RðkÞ
n ðXjYÞ will

not go exactly to zero so this measure will not reach 1 even

in case of perfect synchronization).

We used this interdependence measure to compare

non-overlapping epochs for each couple of channels.

Results have been averaged on regions reported in Fig. 1.
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