152 research outputs found

    Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease.

    Get PDF
    Alzheimer's disease (AD), the most common cause of adult-onset dementia is characterized by a progressive decline of cognitive functions accompanied by behavioral manifestations. The main class of drugs currently used for the treatment of AD are acetylcholinesterase/cholinesterase inhibitors (ChE-Is). The first ChE-I licensed for symptomatic treatment of AD was tacrine. The ChE-Is currently available in the market are donepezil, rivastigmine and galantamine as tacrine is no longer in use, due to its hepatotoxicity. According to mechanism of action the ChE-Is are classified as short-acting or reversible agents such as tacrine, donepezil, and galantamine, as intermediate-acting or pseudo-irreversible agent such as rivastigmine. Overall, the efficacy of the three ChE-Is available in the market is similar and the benefit of administration of these compounds is mild and may not be clinically significant. Due to gastrointestinal side effects of these drugs, medicinal chemistry and pharmaceutical delivery studies have investigated solutions to improve the pharmacological activity of these compounds. In spite of the limited activity of ChE-Is, waiting for more effective approaches, these drugs still represent a pharmacotherapeutic resource for the treatment of AD. Other approaches in which ChE-Is were investigated is in their use in combination with other classes of drugs such as cholinergic precursors, N-methyl-d-aspartate (NMDA) receptor antagonists and antioxidant agents. After many years from the introduction in therapy of ChE-Is, the combination with other classes of drugs may represent the chance for a renewed interest of ChE-Is in the treatment of adult-onset dementia disorders

    Overview on Radiolabel-Free in Vitro Assays for GPCRs

    Get PDF
    G-protein coupled receptors (GPCRs) represent important targets for drug discovery because they participate in a wide range of cellular signalling pathways that play a role in a variety of pathological conditions. The characterization of the patho-physiological profile and functional roles of new receptors is highly dependent on the availability of potent and selective ligands and new screening assays. The study of the pharmacological profile of new chemical entities is very important in order to predict the activity of drugs and their clinical adverse effect in humans. In the last decade, a large number of new in vitro radiolabel-free assays were developed and relevant information on diseases was upgraded. In particular, radiolabel-free assays led significant easy to handle and safer tools for operators. The aim of this review is to analyze these assays in terms of new drug activity and toxicology prediction and translation of non-clinical findings to humans in order to provide a powerful tool to aid drug development

    The Length and Flexibility of the 2-Substituent of 9-Ethyladenine Derivatives Modulate Affinity and Selectivity for the Human A2A Adenosine Receptor

    No full text
    The A2A adenosine receptor (A2A AR) is a key target for the development of pharmacological tools for the treatment of central nervous system disorders. Previous works have demonstrated that the insertion of substituents at various positions on adenine leads to A2A AR antagonists with affinity in the micromolar to nanomolar range. In this work, a series of 9-ethyladenine derivatives bearing phenylalkylamino, phenylakyloxy or phenylakylthio groups of different lengths at the 2-position were synthesised and tested against the human adenosine receptors. The derivatives showed sub-micromolar affinity for these membrane proteins. The further introduction of a bromine atom at the 8-position has the effect of improving the affinity and selectivity for all ARs and led to compounds that are able bind to the A2A AR subtype at low nanomolar levels. Functional studies confirmed that the new adenine derivatives behave as A2A AR antagonists with half-maximal inhibitory concentration values in the nanomolar range. Molecular modelling studies provide a description of the possible binding mode of these compounds at the A2A AR and an interpretation of the affinity data at this AR subtype

    Adenosine receptors as neuroinflammation modulators: role of A1 agonists and A2A antagonists

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).The pathological condition of neuroinflammation is caused by the activation of the neuroimmune cells astrocytes and microglia. The autacoid adenosine seems to be an important neuromodulator in this condition. Its main receptors involved in the neuroinflammation modulation are A1AR and A2AAR. Evidence suggests that A1AR activation produces a neuroprotective effect and A2AARs block prevents neuroinflammation. The aim of this work is to elucidate the effects of these receptors in neuroinflammation using the partial agonist 2'-dCCPA (2-chloro-N6-cyclopentyl-2'-deoxyadenosine) (C1 KiA1AR = 550 nM, KiA2AAR = 24,800 nM, and KiA3AR = 5560 nM, α = 0.70, EC50A1AR = 832 nM) and the newly synthesized in house compound 8-chloro-9-ethyl-2-phenethoxyadenine (C2 KiA2AAR = 0.75 nM; KiA1AR = 17 nM and KiA3AR = 227 nM, IC50A2AAR = 251 nM unpublished results). The experiments were performed in in vitro and in in vivo models of neuroinflammation. Results showed that C1 was able to prevent the inflammatory effect induced by cytokine cocktail (TNF-α, IL-1β, and IFN-γ) while C2 possess both anti-inflammatory and antioxidant properties, counteracting both neuroinflammation in mixed glial cells and in an animal model of neuroinflammation. In conclusion, C2 is a potential candidate for neuroinflammation therapy.This research was funded by Cofinanziamento Assegno di Ricerca Volpini-Marucci, n° FPI400037 and by Fundação para a Ciência e a Tecnologia (PTDC/BIM-MEC/47778/2014). This work was supported by the University of Camerino (Fondo di ricerca di Ateneo) and by a grant from the Ministry of Research (PRIN N° 2015E8EMCM_008, 2015).info:eu-repo/semantics/publishedVersio

    ANCA-associated vasculitis in childhood: Recent advances

    Get PDF
    Abstract Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides are rare systemic diseases that usually occur in adulthood. They comprise granulomatosis with polyangiitis (GPA, Wegener’s), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA, Churg-Strauss syndrome). Their clinical presentation is often heterogeneous, with frequent involvement of the respiratory tract, the kidney, the skin and the joints. ANCA-associated vasculitis is rare in childhood but North-American and European cohort studies performed during the last decade have clarified their phenotype, patterns of renal involvement and their prognostic implications, and outcome. Herein, we review the main clinical and therapeutic aspects of childhood-onset ANCA-associated vasculitis, and provide preliminary data on demographic characteristics and organ manifestations of an Italian multicentre cohort

    The G Protein-Coupled Receptor GPR17: Overview and Update

    No full text
    The GPR17 receptor is a G protein-coupled receptor (GPCR) that seems to respond to two unrelated families of endogenous ligands: nucleotide sugars (UDP, UDP-galactose, and UDP-glucose) and cysteinyl leukotrienes (LTD4 , LTC4 , and LTE4 ), with significant affinity at micromolar and nanomolar concentrations, respectively. This receptor has a broad distribution at the level of the central nervous system (CNS) and is found in neurons and in a subset of oligodendrocyte precursor cells (OPCs). Unfortunately, disparate results emerging from different laboratories have resulted in a lack of clarity with regard to the role of GPR17-targeting ligands in OPC differentiation and in myelination. GPR17 is also highly expressed in organs typically undergoing ischemic damage and has various roles in specific phases of adaptations that follow a stroke. Under such conditions, GPR17 plays a crucial role; in fact, its inhibition decreases the progression of ischemic damage. This review summarizes some important features of this receptor that could be a novel therapeutic target for the treatment of demyelinating diseases and for repairing traumatic injury

    Transcriptional Evidence for the Role of Chronic Venlafaxine Treatment in Neurotrophic Signaling and Neuroplasticity Including also Glutatmatergic- and Insulin-Mediated Neuronal Processes.

    Get PDF
    OBJECTIVES: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS: Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS: Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS: Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke

    Endocannabinoid system in Xenopus laevis development: CB1 receptor dynamics

    No full text
    This study investigates for the first time the dynamics of endocannabinoid system appearance during low vertebrate Xenopus laevis development. We observed that the CB1 gene started to be expressed during the organogenesis period (±1 dpf, st. 28) and expression persisted throughout the three further stages analyzed. Attention was focused on the localization of the CB1 messenger that was found both at the central level (in romboencephalon and in olfactory placods) and at the peripheral level (in the gastrointestinal tract) at ±3 dpf (st. 41), ±4 dpf (st. 46) and ±12 dpf (st. 49). We also considered the synthesis of CB1 protein that occurred from st. 41 onwards and, from this stage, we tested the receptor functionality in response to anandamide using cytosensor microphysiometry. CB1 functionality increased with development at both central and peripheral level. These data provide sufficient evidence to encourage further analysis on endocannabinoid physiological roles during embryonic and larval X. laevis growth

    “Stereoselectivity at α-Adrenoreceptor Subtypes: Observations With the enantiomers of WB 4101 Separated Through Their Amides of N-Tosyl-(S)-Proline”.

    No full text
    • …
    corecore