624 research outputs found

    Infertility and hypergonadotropic hypogonadism as first evidence of hereditary apolipoprotein A-I amyloidosis

    Get PDF
    Purpose: We report that primary infertility and hypergonadotropic hypogonadism in young patients may be caused by testicular amyloidosis and it is associated with the presence of a mutation in the apoA-I gene, resulting in the replacement of proline for leucine at residue 75 of the protein. Materials and Methods: Ten patients presenting with infertility, gynecomastia, decreased libido, erectile dysfunction or a family history of amyloidosis underwent clinical evaluation, hormone assays, semen analysis, ultrasonographic investigation of the testicles, testicular biopsy and DNA sequencing of the apoA-I gene. Results: All patients showed azoospermia and 9 had increased testicular volume. Massive amyloid deposition was observed in all testicular biopsies and the apoA-I mutation of replacement of proline for leucine at residue 75 of the protein was noted. Five patients showed hypergonadotropic hypogonadism and 5 had normal testosterone values with high gonadotropin levels. Conclusions: Nonobstructive azoospermia and macro-orchidism with or without hypogonadism may be caused by hereditary apoA-I amyloidosis in young patients. Testicular amyloidosis can be the first manifestation of this systemic disease. Specific staining for amyloid deposits and genetic analysis of apoA-I mutations are recommended in young, infertile patients with macro-orchidism. Finally, surveillance in asymptomatic mutation carriers is suggested to evaluate the opportunity to implement sperm retrieval and start androgen replacement therapy when necessary

    Cosmic Hydrogen Was Significantly Neutral a Billion Years After the Big Bang

    Full text link
    The ionization fraction of cosmic hydrogen, left over from the big bang, provides crucial fossil evidence for when the first stars and quasar black holes formed in the infant universe. Spectra of the two most distant quasars known show nearly complete absorption of photons with wavelengths shorter than the Ly-alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift z~6.3, about a billion years after the big bang. Here we show that the radii of influence of ionizing radiation from these quasars imply that the surrounding IGM had a neutral hydrogen fraction of tens of percent prior to the quasar activity, much higher than previous lower limits of ~0.1%. When combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination from the WMAP data, our result suggests the existence of a second peak in the mean ionization history, potentially due to an early formation episode of the first stars.Comment: 14 Pages, 2 Figures. Accepted for publication in Nature. Press embargo until publishe

    Maintenance of bone mineral density after implantation of a femoral neck hip prosthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stress shielding of the proximal femur has been observed in a number of conventional cementless implants used in total hip arthroplasty. Short femoral-neck implants are claiming less interference with the biomechanics of the proximal femur. The goal of this study was to investigate the changes of bone-mineral density in the proximal femur and the clinical outcome after implantation of a short femoral-neck prosthesis.</p> <p>Methods</p> <p>We prospectively assessed the clinical outcome and the changes of bone mineral density of the proximal femur up to one year after implantation of a short femoral neck prosthesis in 20 patients with a mean age of 47 years (range 17 to 65). Clinical outcome was assessed using the Harris Hip Score. The WOMAC was used as a patient-relevant outcome-measure. The bone mineral density was determined using dual energy x-ray absorptiometry, performed 10 days, three months and 12 months after surgery.</p> <p>Results</p> <p>The Harris Hip Score improved from an average preoperative score of 46 to a postoperative score at 12 months of 89 points, the global WOMAC index from 5,3 preoperatively to 0,8 at 12 months postoperatively. In contrast to conventional implants, the DEXA-scans overall revealed a slight increase of bone mineral density in the proximal femur in the 12 months following the implantation.</p> <p>Conclusion</p> <p>The short femoral neck stem lead to a distinct bone reaction. This was significantly different when compared to the changes in bone mineral density reported after implantation of conventional implants.</p

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.

    Get PDF
    Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation. Ten outpatient stroke survivors with chronic (&gt;6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week). All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention. This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness. This trial was retrospectively registered at ClinicalTrials.gov database (registration number NCT03094650 ) on 14 March 2017

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    Temperature-Dependent Modulation of Chromosome Segregation in msh4 Mutants of Budding Yeast

    Get PDF
    BACKGROUND:In many organisms, homologous chromosomes rely upon recombination-mediated linkages, termed crossovers, to promote their accurate segregation at meiosis I. In budding yeast, the evolutionarily conserved mismatch-repair paralogues, Msh4 and Msh5, promote crossover formation in conjunction with several other proteins, collectively termed the Synapsis Initiation Complex (SIC) proteins or 'ZMM's (Zip1-Zip2-Zip3-Zip4-Spo16, Msh4-Msh5, Mer3). zmm mutants show decreased levels of crossovers and increased chromosome missegregation, which is thought to cause decreased spore viability. PRINCIPAL FINDINGS:In contrast to other ZMM mutants, msh4 and msh5 mutants show improved spore viability and chromosome segregation in response to elevated temperature (23 degrees C versus 33 degrees C). Crossover frequencies in the population of viable spores in msh4 and msh5 mutants are similar at both temperatures, suggesting that temperature-mediated chromosome segregation does not occur by increasing crossover frequencies. Furthermore, meiotic progression defects at elevated temperature do not select for a subpopulation of cells with improved segregation. Instead, another ZMM protein, Zip1, is important for the temperature-dependent improvement in spore viability. CONCLUSIONS:Our data demonstrate interactions between genetic (zmm status) and environmental factors in determining chromosome segregation

    SARS-CoV-2 detection by a clinical diagnostic RT-LAMP assay

    Get PDF
    The ongoing pandemic of SARS-CoV-2 calls for rapid and cost-effective methods to accurately identify infected individuals. The vast majority of patient samples is assessed for viral RNA presence by RT-qPCR. Our biomedical research institute, in collaboration between partner hospitals and an accredited clinical diagnostic laboratory, established a diagnostic testing pipeline that has reported on more than 252,000 RT-qPCR results since its commencement at the beginning of April 2020. However, due to ongoing demand and competition for critical resources, alternative testing strategies were sought. In this work, we present a clinically-validated procedure for high-throughput SARS-CoV-2 detection by RT-LAMP that is robust, reliable, repeatable, specific, and inexpensive

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore