2,522 research outputs found

    A small slug from a tropical greenhouse reveals a new rathouisiid lineage with triaulic tritrematic genitalia (Gastropoda: Systellommatophora)

    Get PDF
    A small slug found in the tropical greenhouse of the Science Museum (MUSE) of Trento (Italy) turned out to be a species of the little-known systellommatophoran family Rathouisiidae. We undertook detailed comparative anatomical and molecular studies using specimens of the MUSE slug, Rathouisia sinensis, and sequences of other systellommatophoran species deposited in GenBank to conduct a systematic and phylogenetic assessment. Analysis of the genitalia of the MUSE slug and R. sinensis revealed an unusual triaulic tritrematic structure: two separate female ducts – one for egg release (oviduct), the other for intake of allosperm (vagina) – and a separate male duct for autosperm release. Analysis of the nucleotide sequences of several mitochondrial (COI, 16S rDNA) and nuclear (18S rDNA, ITS2 flanked by 5.8S and 28S rDNA fragments, H3) gene fragments supported assignation of the MUSE slug to Rathouisiidae, but also its distinction from the other rathouisiid genera Atopos, Granulilimax, Rathouisia and an undescribed genus from the Ryukyu Islands (Japan). Therefore, we decided to describe the MUSE slug as a new species in a new genus: Barkeriella museensis gen. et sp. nov. The species is certainly an alien introduced into the tropical greenhouse of MUSE, but its origin is unknown and calls for further investigation. © 2022 The Linnean Society of London

    Autonomic dysfunction is associated with disease progression and survival in amyotrophic lateral sclerosis: a prospective longitudinal cohort study

    Get PDF
    Background: Among non-motor symptoms, autonomic disturbances have been described in amyotrophic lateral sclerosis (ALS) and reported as mild to moderate in up to 75% of patients. However, no study has systematically investigated autonomic symptoms as prognostic factors. Objectives: The main aim of this longitudinal study was to examine the association of autonomic dysfunction with disease progression and survival in ALS. Methods: We enrolled newly diagnosed ALS patients and a healthy control group (HC). Time from disease onset to disease milestone (King’s stage 4) and death were calculated to assess disease progression and survival. Autonomic symptoms were assessed by a dedicated questionnaire. Longitudinal evaluation of parasympathetic cardiovascular activity was performed by the heart rate variability (HRV). Multivariable Cox proportional hazards regression models on the risk of the disease milestone and death were used. A mixed-effect linear regression model was used to compare autonomic dysfunction with a HC group as well as its impairment over time. Results: A total of 102 patients and 41 HC were studied. ALS patients, compared with HC, complained of more autonomic symptoms, especially in bulbar onset patients. Autonomic symptoms occurred in 69 (68%) patients at diagnosis and progressed over time (post-6: p = 0.015 and post-12: p < 0.001). A higher autonomic symptom burden was an independent marker of faster development of King’s stage 4 (HR 1.05; 95% CI 1.00–1.11; p = 0.022); whereas, urinary complaints were independent factors of a shorter survival (HR 3.12; 95% CI 1.22–7.97; p = 0.018). Moreover, HRV in ALS patients was lower than in HC (p = 0.018) and further decreased over time (p = 0.003), implying a parasympathetic hypofunction that progressed over time. Conclusion: Autonomic symptoms occur in most of the ALS patients at diagnosis and progress over time, implying that autonomic dysfunction represents an intrinsic non-motor feature of the disease. A higher autonomic burden is a poor prognostic factor, associated with a more rapid development of disease milestones and shorter survival

    Combined Collection and Analysis of Inorganic and Organic Gunshot Residues.

    Get PDF
    Gunshot residue (GSR) analysis and their interpretation provide crucial information on a criminal investigation involving the use of firearms. To date, several approaches have been proposed for the implementation of a combined sampling and analysis of inorganic (IGSR) and organic GSR (OGSR). However, it is not clear at this stage if concurrent analyses of both types of residue might be detrimental to the analysis of IGSR currently applied in forensic laboratories. Thus, this work aims to compare and evaluate three different protocols for the combined collection and analysis of IGSR and OGSR. These methods, respectively, involve the use of a modified stub (with two halves, one for the detection of IGSR and the other for the analysis of OGSR); the sequential recovery of GSR with two stubs mounted with different adhesives (double-sided carbon tape and Tesa® TACK) and the sequential analysis of IGSR and OGSR from a single carbon stub following carbon deposition. The detection of IGSR was carried out using SEM-EDX, while OGSR analysis was performed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Obtained results for experiments performed using Geco Sinoxid &lt;sup&gt;®&lt;/sup&gt; ammunition indicated that sequential analysis was the most suitable protocol for the combined collection and analysis of both IGSR and OGSR. A higher number of inorganic (characteristic and consistent) particles and higher concentrations of ethylcentralite, N-nitrosodiphenylamine, diphenylamine, and nitroglycerin were recovered with this method

    Secondary transfer of organic gunshot residues: Empirical data to assist the evaluation of three scenarios.

    Get PDF
    The present study aimed at providing data to assess the secondary transfer of organic gunshot residues (OGSR). Three scenarios were evaluated in controlled conditions, namely displacing a firearm from point A to point B, a simple handshake and an arrest involving handcuffing on the ground. Specimens were collected from the firearm, the hands of the shooter and the non-shooter undergoing the secondary transfer in order to compare the amounts detected. Secondary transfer was observed for the three scenarios, but to a different extent. It was found that displacing a firearm resulted in secondary transfer in &lt;50% of the experiments. The firearm also had an influence, as contrary to the pistol, no secondary OGSR were detected using the revolver. Shaking the hand of the shooter also transferred OGSR to the non-shooter's hand. In that case, the amount of OGSR was generally higher on the shooter than on the non-shooter. Finally, the largest secondary transfer was observed after the arrest with handcuffing with positive results in all cases using the pistol. In that scenario, the amounts on the shooter and the non-shooter were in the same range. This study highlights that the secondary transfer must be taken into account in the interpretation of OGSR. Indeed, an individual's hands might be contaminated by handling a firearm or having physical contact with a shooter

    Integrating computational methods to predict mutagenicity of aromatic azo compounds

    Get PDF
    Azo dyes have several industrial uses. However, these azo dyes and their degradation products showed mutagenicity, inducing damage in environmental and human systems. Computational methods are proposed as cheap and rapid alternatives to predict the toxicity of azo dyes. A benchmark dataset of Ames data for 354 azo dyes was employed to develop three classification strategies using knowledge-based methods and docking simulations. Results were compared and integrated with three models from the literature, developing a series of consensus strategies. The good results confirm the usefulness of in silico methods as a support for experimental methods to predict the mutagenicity of azo compounds

    Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome. Molecular Mechanisms and Signaling through Lipid Rafts

    Get PDF
    The pathological features of antiphospholipid syndrome (APS) are related to the activity of circulating antiphospholipid antibodies (aPLs) associated with vascular thrombosis and obstetric complications. Indeed, aPLs are not only disease markers, but also play a determining pathogenetic role in APS and exert their effects through the activation of cells and coagulation factors and inflammatory mediators for the materialization of the thromboinflammatory pathogenetic mechanism. Cellular activation in APS necessarily involves the interaction of aPLs with target receptors on the cell membrane, capable of triggering the signal transduction pathway(s). This interaction occurs at specific microdomains of the cell plasma membrane called lipid rafts. In this review, we focus on the key role of lipid rafts as signaling platforms in the pathogenesis of APS, and propose this pathogenetic step as a strategic target of new therapies in order to improve classical anti-thrombotic approaches with "new " immunomodulatory drugs

    Large-FSR Thermally Tunable Double-Ring Filters for WDM Applications in Silicon Photonics

    Get PDF
    International audience; We present the design procedure and experimental results of thermally tunable double ring resonators for integrated wavelength division multiplexing applications. A detailed analytical model specific for double rings is described, and a modified racetrack geometry using Bezier bends is used to reduce bending loss. We demonstrate devices with a free-spectral-range up to 2.4 THz ( 19 nm) around 1550 nm and nonadjacent channel rejection higher than 35 dB. The experimental results of thermally tunable double ring resonators is also presented with doped silicon integrated heaters, allowing the device to be used as a tunable filter or a switch

    Alterations of autophagy in the peripheral neuropathy Charcot-Marie-Tooth type 2B

    Get PDF
    Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5 mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT, expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation, suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.Peer reviewe
    corecore