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ABSTRACT
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5
mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In
neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and
signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/
autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for
autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this
gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing
RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT,
expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing
the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy
were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation,
suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.
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Introduction

More than 80 genes have been involved in Charcot-Marie-
Tooth (CMT), a rare inherited peripheral neuropathy, and sev-
eral of them are involved in the regulation of intracellular vesic-
ular trafficking.1,2 The CMT type 2B (CMT2B) is a dominant
axonal form caused by 5 mutations (L129F, K157N, N161T,
V162M and the recently identified N161I) in the RAB7A
gene,3–6 and it is characterized by prominent sensory loss,
lower legs muscle atrophy, high frequency of foot ulcers and
recurrent infections leading to toe amputations.7–9

RAB7A, hereafter referred to as RAB7, is a ubiquitous small
GTPase regulating late endocytic transport.10–12 To investigate
the role of RAB7 in the endocytic pathway, previous studies
have used the dominant negative RAB7T22N mutant, which dis-
plays reduced affinity for GTP and impaired nucleotide
exchange, thus being mainly GDP-bound, and the constitu-
tively active RAB7Q67L mutant, which displays impaired intrin-
sic GTP hydrolysis, thus being mainly GTP-bound.13

Others and we have demonstrated that CMT2B-causing
RAB7 mutants show higher nucleotide Koff, thus releasing
nucleotides faster than expected and, consequently, displaying
inhibited GTPase activity per binding event.14–16 Indeed, given
the higher Koff for GDP compared to the wild-type protein and
the higher concentration of GTP compared to GDP in cells,

CMT2B mutant proteins are mostly in the GTP-bound form
and, thus, were initially predicted to be active mutants.14 How-
ever, given that Koff for GTP is also increased compared to
RAB7WT,14–16 thus determining early release of GTP, and that
binding of GTP is not correctly regulated,16 these mutants
although being mainly GTP-bound and interacting more
strongly with a number of effector proteins,14,16 could also dis-
play reduced efficiency in the activation of downstream specific
effectors and pathways. In fact, studies on disease animal mod-
els established that in Drosophila, the presence of CMT2B
mutant proteins induces sensory defects and dosage-dependent
neurodegeneration due to partial loss of function,17,18 while in
zebrafish axon growth and guidance defects are due to gain-of-
function mechanisms.19 Therefore, depending on the kinetic
requirements of the processes controlled by RAB7, these
mutants could behave as inhibitory or active.

RAB7 controls specific neuronal functions such as NTF
(neurotrophin) trafficking and signaling and it is responsible
for retrograde axonal traffic, neurite outgrowth and neuronal
migration,20–24 besides interacting with and regulating assem-
bly of 2 intermediate filament proteins, VIM (vimentin) and
PRPH (peripherin), which are involved in neurite outgrowth
and axonal regeneration.25–31 Neuronal functions are highly
dependent on protein synthesis and degradation, and a consti-
tutive autophagic flux is fundamental for a number of key
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neuronal processes.32–34 Perturbation of the autophagic flux
indeed causes neurodevelopmental and neurodegenerative dis-
eases and has been observed, for instance, in Alzheimer disease,
Parkinson disease and amyotrophic lateral sclerosis.33,34 Nota-
bly, RAB7 regulates autophagosomal maturation controlling
the final step of maturation of late autophagic vesicles into
autolysosomes, presumably involving fusion with lyso-
somes.12,35–37

In this manuscript we investigated the role of CMT2B-caus-
ing RAB7 mutant proteins in autophagy, demonstrating that
expression of these mutants alters both basal and starvation-
induced autophagy in HeLa cells. Furthermore, these finding
were confirmed in patient skin fibroblasts carrying the
RAB7V162M mutation suggesting that neurodegeneration could
be due to altered autophagy.

Results

To investigate the role of CMT2B-causing RAB7 mutant pro-
teins (RAB7L129F, RAB7K157N, RAB7N161T and RAB7V162M) on
autophagy, we analyzed, by immunofluorescence analysis,
colocalization of wild type and mutant proteins with the auto-
paghic vesicle marker LC3B. HeLa cells were analyzed after
incubation in full medium to determine the basal level of RAB7
and LC3B colocalization, whereas starvation medium was used
to induce the autophagic process, and bafilomycin A1 (Baf), a
drug inhibiting the vacuolar-type H+-translocating ATPase (V-
ATPase), was used to prevent the lysosomal turnover of the
autophagosome content (Fig. S1-S3). Consistent with previous
results,35 RAB7WT displayed a good colocalization rate with
LC3B, which increased upon starvation (Fig. 1A; Fig. S1-S3).
As expected, the constitutively active RAB7Q67L mutant showed
increased colocalization with LC3B both in full medium and in
starvation medium (Fig. 1A; Fig. S1-S2). Interestingly, CMT2B-
causing mutants showed a reduced colocalization rate in each
of the conditions tested, comparable with that of the dominant
negative RAB7T22N mutant (Fig. 1A; Fig. S1-S3), indicating that
CMT2B-causing mutants are less recruited to autophagic
vesicles when compared with RAB7WT. Based on the estab-
lished role of RAB7 in autophagy,35 the reduced localization of
this protein on autophagic vesicles suggests potential functional
consequences of RAB7 mutant expression on this process.

Autophagosome number is one of the main mechanistic fac-
tors through which the amplitude of autophagic activity is reg-
ulated.38 Therefore, we analyzed the number of
autophagosomes in cells expressing RAB7WT and mutant pro-
teins. Interestingly, CMT2B-associated mutant proteins caused
a reduction in the amount of autophagic vesicles in full
medium, starvation medium and upon bafilomycin A1 treat-
ment, as compared to RAB7WT (Fig. 1B).

The analysis of the autophagic flux, obtained by the ratio
between the amount of autophagic vesicles in basal conditions
(FM) and upon protease inhibition (Baf),39 showed a reduced
autophagic flux upon expression of the CMT2B-causing RAB7
mutants and, as expected,35 of RAB7T22N, as compared to
RAB7WT and RAB7Q67L proteins (Fig. 1C).

To confirm these data, we also used a different approach,
immunoblot analysis, in order to monitor the abundance of
LC3B-II on extracts of HeLa cells transfected with empty vector

or expressing RAB7WT and mutant proteins and grown in full
and starvation medium or treated with bafilomycin A1. As
shown in Fig. 2A-C, we again observed a reduced autophagic
flux upon expression of CMT2B-causing mutants as compared

Figure 1. Analysis of autophagy in HeLa cells expressing CMT2B-causing RAB7
mutant proteins. HeLa cells transfected for 48 h with empty vector or plasmids
encoding HA-tagged RAB7WT, RAB7Q67L, RAB7T22N and CMT2B-causing RAB7
mutants (RAB7L129F, RAB7K157N, RAB7N161T, RAB7V162M), were incubated in full
medium (FM) or starvation medium (ST) for 30 min, or in the presence of 100 nM
bafilomycin A1 (BAF) for 3 h. (A) The colocalization rate between RAB7 and LC3B
was analyzed for the each different RAB7 isoform and for each condition (FM, ST,
BAF). (B) The number of LC3B-positive dots per cell was evaluated for each sample.
(C) The autophagic flux was calculated as the ratio of LC3B dots between BAF and
FM of the same sample and normalized on empty vector. Quantification of results
was performed by unbiased intensitometric analysis of fluorescence using the
Quantitation Module of Volocity software.69 Statistical analysis one-way ANOVA
test was performed between the same conditions (FM, ST and BAF) selecting
RAB7WT as the referring sample. All statistical comparisons are from the sample
indicated with asterisks and RAB7WT. Means § SEM for each value are shown in
the graphs (n = 3). � = p < 0.05; �� = p < 0.01; ��� = p < 0.001.
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to the wild-type protein, with all mutant proteins behaving sim-
ilarly to the dominant negative T22N form of RAB7 in full
medium and upon bafilomycin A1 treatment. It is worth noting
that effects obtained with the RAB7T22N mutant in immunoflu-
orescence analysis are much stronger than the ones obtained by
immunoblotting, as this mutant is generally less expressed and
only with immunofluorescence can transfected cells be selected
for analysis.

In order to further validate these data, we analyzed the auto-
phagic flux also monitoring SQSTM1/p62 and GABARAP
(Fig. 2 D-F), 2 additional well established autophagy markers.39

Data obtained using these markers confirmed that expression
of the CMT2B-causing RAB7 mutant proteins reduced the
autophagic flux compared to RAB7WT. Interestingly, using
these markers the expression of the constitutively active
RAB7Q67L increased the autophagic flux, whereas expression of
the dominant negative RAB7T22N caused a much stronger inhi-
bition compared to the CMT2B-causing RAB7 mutant pro-
teins, thus confirming the different nature of these mutants.

Altogether, these data strongly indicate that CMT2B-causing
mutations negatively affect the role of RAB7 in the autophagic
process.

In order to determine in which step the CMT2B-causing
RAB7 mutant proteins inhibit autophagy, we used the tandem
EGFP-mCherry-LC3B construct to monitor autophagic vesicle
maturation (Fig. 3). The basis for the utility of EGFP-mCherry-
LC3B as a reporter for autophagic flux lies in the higher sensi-
tivity of EGFP fluorescence to the acidic environment of the
autolysosome relative to mCherry. Indeed, cells with higher
flux have lower green signal due to the fusion of autophago-
somes with lysosomes, which increases the mCherry:EGFP
ratio in the cell. Using ratiometric flow cytometry, it is possible
to calculate the flux in each cell based on this ratio.40 Taking
advantage of this method, we observed that, in CMT2B RAB7
mutants, autophagosomes had a reduced fusion rate to lyso-
somes as compared to RAB7WT, while constitutive active
RAB7Q67L increased this rate and dominant negative RAB7T22N

strongly impaired it (Fig. 3).
In order to validate data obtained on transfected HeLa cells,

we next isolated and cultured skin fibroblasts from a CMT2B
patient carrying the RAB7V162M mutation and from a healthy
donor.9 Again, we evaluated the colocalization rate between
RAB7 and LC3B in control and CMT2B skin fibroblasts and
observed a reduction of colocalization in CMT2B cells com-
pared to control cells (»57%, »68% and »50% in full medium,
starvation and upon bafilomycin A1 treatment, respectively;
Fig. 4A and B), consistent with data obtained in HeLa cells
(Fig. 1A).

Immunofluorescence analysis also revealed that the number
of LC3B-positive vesicles was significantly reduced in CMT2B
fibroblasts in each of the conditions tested and, in particular,
the autophagic flux was significantly decreased in CMT2B
fibroblasts (Fig. 4A, C and D). As a further confirmation, we
also analyzed LC3B and RAB7 in fibroblasts by immunoblot-
ting. In CMT2B cells, the autophagic flux was clearly reduced
(Fig. 5A and B). Comparison of immunofluorescence and
immunoblotting data showed that, while fewer LC3 vesicles
were detected by immunofluorescence in CMT2B fibroblasts
grown in full medium (Fig. 4A, C), immunoblotting in the

same conditions revealed an increase of LC3B-II (Fig. 5A and
B). However, it is worth noting that quantification of the auto-
phagic flux in both cases demonstrated a strong inhibition
(Fig. 4D, 5C), and that differences detected in full medium
could be due to the different antibodies employed and to the
detection limits of fluorescence microscopy. The inhibition of
the autophagic flux in CMT2B fibroblasts was also evident both
by starving cells in the absence or presence of bafilomycin A1

(Fig. 5D-F) and by monitoring SQSTM1 and GABARAP-II
after a long treatment with bafilomycin A1 (Fig. 5G-K). Overall,
our data, therefore, indicate a negative role of CMT2B muta-
tions on autophagy while, at variance, the parallel endocytic
pathway seems to be positively affected by the presence of the
RAB7V162M mutant as degradation of TFRC (transferrin recep-
tor) is increased (Fig. S4), confirming previous studies in differ-
ent animal models (Drosophila, zebrafish) showing that
CMT2B mutants could behave both as inhibitory and as active
proteins, depending on the kinetic requirements of the pro-
cesses controlled by RAB7 (see, also, the Introduction).17–19

The role of RAB7 in autophagy has been extensively investi-
gated and its function has been clearly correlated to autophago-
some maturation and late endosome fusion with autophagic
vesicles and lysosomes.12,41,42 However, to verify that indeed
CMT2B mutations in this gene do not affect also early phases
of autophagosomal biogenesis, we evaluated the expression of
the ATG12–ATG5 complex upon prolonged serum starva-
tion.38,39,43 Interestingly, ATG12–ATG5 levels similarly
increased in normal and CMT2B fibroblasts, indicating that
autophagosomal biogenesis was not affected by the RAB7V162M

mutation (Fig. 6A-C). As an additional confirmation of this
result, we also monitored the formation of ATG5 and ATG12
puncta in starved cells, which is another marker for autophago-
somal biogenesis.38,39,43–45 Indeed, normal and CMT2B fibro-
blasts showed a similar amount of ATG5 and ATG12 puncta
per cell, both in full medium and in starved cells (Fig. 6D-G),
further supporting the idea that RAB7V162M mutation does not
affect autophagosomal biogenesis but acts in later steps of auto-
phagosome maturation.

Discussion

Altogether, our results clearly indicate a reduction of CMT2B-
causing RAB7 mutant localization on autophagic vesicles com-
pared to the wild-type protein, suggesting functional conse-
quences on autophagy, based on the important role of RAB7 in
this process.35,42,46–48 Indeed, by first using a HeLa model cell
system, we demonstrate that, different from the wild-type pro-
tein, these mutants fail to increase the number of autophago-
somes both in basal conditions and after stimulation, behaving
similarly to the dominant negative and functionally impaired
RAB7T22N mutant. Still, while model cell lines are widely used
as easily manageable tools to understand molecular mecha-
nisms involved in a wide variety of cellular phenomena, they
do not necessarily fully recapitulate the biological conditions of
affected cells in vivo. Indeed, while cells of CMT2B-affected
individuals have one wild-type and one mutated allele, HeLa
cells encode 3 functional copies of RAB7,49 thus probably
reducing the overall effect of mutated RAB7 exogenous expres-
sion. Hence, the possibility to analyze CMT2B patient’s skin
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Figure 2. Analysis of autophagy in HeLa cells expressing CMT2B-causing RAB7 mutant proteins. HeLa cells transfected for 48 h with empty vector or plasmids encoding
HA-tagged RAB7WT, RAB7Q67L, RAB7T22N and CMT2B-causing RAB7 mutants (RAB7L129F, RAB7K157N, RAB7N161T, RAB7V162M). Cells were incubated in full medium (FM) or star-
vation medium (ST) for 30 min, or in the presence of 100 nM bafilomycin A1 (BAF) for 3 h. (A) Cells were incubated in full medium or starvation medium for 30 min, or in
the presence of BAF for 3 h. Immunoblot of LC3B, HA-RAB7, endogenous RAB7 and MAPK1. Representative images from 3 independent experiments are shown (n = 3).
(B) Intensitometric analysis of LC3B and MAPK1 immunoblots shown in (A) were performed with NIH ImageJ. (C) The autophagic flux was calculated as the ratio of nor-
malized LC3B-II between BAF and FM of the same sample. (D) Cells were incubated in full medium or in the presence of BAF for 24 h and next immunobloted for SQSTM1,
GABARAP, HA-RAB7, endogenous RAB7 and MAPK1 proteins. Representative images from 3 independent experiments are shown (n = 3). (E) Intensitometric analysis of
SQSTM1, GABARAP and MAPK1 immunoblots was used to calculate the autophagic flux as the ratio of LC3B dots between BAF and FM of the same sample. Statistical
analysis one-way ANOVA test was performed between the same conditions (FM, ST and BAF) selecting RAB7WT as the referring sample. All statistical comparisons are
from the sample indicated with asterisks and RAB7WT. Means § SEM for each value are shown in the graphs. � = p < 0.05; �� = p < 0.01; ��� = p < 0.001.
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fibroblasts, carrying the RAB7V162M mutation together with
only 1 wild-type allele, allowed us to obtain more convincing
results, in the precise cellular conditions in which the disease
develops. Importantly, as demonstrated in HeLa cells, also in

CMT2B fibroblasts colocalization of the mutated RAB7 protein
with LC3B was very limited (»20%) and the number of LC3B-
positive organelles was strongly reduced compared to control
fibroblasts, in all conditions, clearly demonstrating that, in

Figure 3. Analysis of autophagic flux in EGFP-mCherry-LC3B HeLa cells expressing CMT2B-causing RAB7 mutant proteins. HeLa cells transfected for 48 h with empty vec-
tor or plasmids encoding HA-tagged RAB7WT, RAB7Q67L, RAB7T22N and CMT2B-causing RAB7 mutants (RAB7L129F, RAB7K157N, RAB7N161T, RAB7V162M), were incubated in full
medium (FM) or starvation medium (ST) for 4 h. Scatter and singlet gates were used to eliminate debris, dead cells, and mitotic cells. For each experiment, voltages and
gain on EGFP and mCherry detectors are set empirically on negative and positive controls to allow the best plot fit on the mCherry:EGFP ratio histogram. Statistical analy-
sis one-way ANOVA test was performed between the same conditions (FM and ST) selecting RAB7WT as the referring sample. All statistical comparisons are from the sam-
ple indicated with asterisks and the corresponding RAB7WT. Means § SEM for each value are shown in the graphs. � = p < 0.05; �� = p < 0.01; ��� = p < 0.001. (A) Graph
shows the percentage of cells with high autophagic flux (measured as mCherry:EGFP ratio) in FM and ST for each sample. (B) Histograms plotting cell counts versus
mCherry:EGFP ratio with a bar indicating the gate for high autophagic flux cell population. Representative images from 3 independent experiments are shown (n = 3).
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affected cells, the autophagic flux is inhibited. Immunofluores-
cence data obtained in patients’ cells were also confirmed by
western blot analysis of LC3B, SQSTM1 and GABARAP
demonstrating an inhibition of the autophagic flux. Overall,
experiments with patients’ fibroblasts confirmed and rein-
forced our HeLa cell data and supported a model in which
specific mutations in the RAB7 proteins represent a strong
limiting factor for basal and induced autophagy in affected
individuals, suggesting a reduced ability of mutated cells to
respond to intra- and extracellular stimuli through activation
of autophagy. In this context, it is important to note that in
CMT2B cells degradation of TFRC was increased compared
to control cells (Fig. S4), similar to what we previously
observed for EGFR (epidermal growth factor receptor) by
transiently overexpressing the mutant in HeLa cells, although
data were not statistically significant probably because of
transient transfection efficiency variations between experi-
ments.14 Therefore, the RAB7V162M mutant seems to have a
different impact on endocytosis and autophagy and these
results confirm that, although endosomal and autophagoso-
mal maturation processes share many machinery compo-
nents, they also display important differences and thus can
be differentially regulated.50,51 Clearly, further work is

necessary to clarify the impact of CMT2B-causing mutant
proteins on the endocytic pathway.

Autophagy is an essential process to eliminate cellular waste
and, in post-mitotic cells such as neurons, failure of this process
may cause accumulation of protein aggregates and, ultimately,
lead to cell damage.52 Indeed, neurons have very high and effi-
cient basal autophagic activity and altered autophagy is now
recognized as an important cause of neuronal degeneration
both in the central and peripheral nervous system.52–56 Axons
and dendrites are particularly sensitive to accumulation of pro-
tein aggregates or damaged organelles and a growing body of
evidence indicates that altered (both increased or inhibited)
autophagy can lead to axonal and/or dendrite degeneration.57–
60 In addition, autophagy is induced after axonal damage in
order to halt axonal degeneration.61,62 Therefore, the impaired
ability of CMT2B-causing RAB7 mutant proteins to induce
autophagy could limit this important neuroprotective mecha-
nism and, in the long term, support the establishment of
CMT2B disease.

In conclusion, our data indicate that CMT2B mutations
strongly affect cellular autophagic flux and suggest that inhibi-
tion of autophagy caused by expression of altered RAB7 pro-
teins could be the cause of increased axonal degeneration

Figure 4. Analysis of autophagy in CMT2B fibroblasts. Normal dermal human fibroblasts (NDHF) and CMT2B patient-derived fibroblasts were incubated with full medium
or starvation medium for 30 min, or incubated with 400 nM bafilomycin A1 for 3 h. (A) Representative images (n = 3) for NDHF and CMT2B fibroblasts labeled for LC3B
(green), RAB7 (red) and nuclei (blue). White squares indicated the area enlarged in the zoom. (B) Colocalization rate between RAB7 and LC3B was analyzed for each condi-
tion (FM, ST, BAF). (C) The number of autophagosomes (scored as LC3B-positive dots) per cell was evaluated for each sample. (D) The autophagic flux was calculated as
the ratio of LC3B dots between FM and BAF of the same sample. Statistical analysis was performed using one-way ANOVA test where normal fibroblasts were selected as
referring sample for each condition (FM, ST and BAF). Means § SEM for each value are shown in the graphs. � = p < 0.05; �� = p < 0.01; ��� = p < 0.001. Scale bars are
10 mm for FM and BAF and 25 mm for ST.
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Figure 5. Analysis of autophagy in CMT2B fibroblasts. (A) Normal dermal human fibroblasts and CMT2B patient derived fibroblasts were incubated with full medium (FM)
or starvation medium (ST) for 30 min, or incubated with 400 nM bafilomycin A1 (BAF) for 3 h. Immunoblot of LC3B, HA-RAB7 proteins and MAPK1. Representative images
from 3 independent experiments are shown (n = 3). (B) Intensitometric analysis of LC3B and MAPK1 immunoblots shown in (A) were performed with NIH ImageJ. (C) The
autophagic flux was calculated as the ratio of normalized LC3B-II between BAF and FM of the same sample. (D) Normal dermal human fibroblasts and CMT2B patient-
derived fibroblasts were incubated with starvation medium with or without 400 nM BAF for 3 h. Immunoblot of LC3B, RAB7 proteins and MAPK1. Representative images
from 3 independent experiments are shown (n = 3). (E) Intensitometric analysis of LC3B and MAPK1 immunoblots shown in (D) were performed with NIH ImageJ. The
autophagic flux was calculated as the ratio of LC3B dots between BAF and FM of the same sample. (F) The autophagic flux was calculated as the ratio of normalized
LC3B-II between BAF and FM of the same sample. (G) Normal dermal human fibroblasts and CMT2B patient derived fibroblasts were incubated with full medium or incu-
bated with 400 nM BAF for 24 h. Immunoblot of SQSTM1, GABARAP, RAB7 and MAPK1 proteins. Representative images from 3 independent experiments are shown
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leading to the neuropathy. This information, therefore, suggests
that the possibility of targeting autophagy may represent a
potential approach to improve conditions of affected individu-
als, while taking advantage of assays for scoring autophagy
(such as the described ratiometric flow cytometry flux assay) to
rapidly evaluate, in vitro, the extent of the damage imposed by
CMT2B-causing mutations and possibly select and guide forth-
coming therapeutic options.

Materials and methods

Isolation of human fibroblasts

After informed consent for pathological diagnosis, residual tis-
sue specimens were collected following a biobanking standard
operating procedure.63 The samples were anonymously
encoded to protect patient confidentiality and used under pro-
tocols approved by the Azienda Ospedaliera Universitaria
“Federico II” Ethics Committee (Ethical Committee Approval
Protocol #107/05). Aliquots of fresh tissue specimens were
minced in small fragments (less than 1 mm3), in a sterile envi-
ronment and processed to obtain primary cultures of mesen-
chymal cells, as previously reported.64 Tissue digestion was
carried out at 37�C, for 2–4 h in a solution of type IV collage-
nase, 1 mg/mL (Sigma-Aldrich, 10103586001), containing
40 mg/mL bovine serum albumin (Sigma-Aldrich, A7979),
2 mg/mL glucose (Sigma-Aldrich, G7021), 100 U/ml penicillin
and 100 mg/ml streptomycin (Sigma-Aldrich, P0781), 50 mg/l
gentamicin (Sigma-Aldrich, G1397), 1.25 mg/l of Fungizone
(Gibco, 15240-062). The samples were then extensively rinsed
with phosphate-buffered saline (PBS; Oxoid, BR0014G) and
suspended in standard culture media supplemented with 10%
fetal bovine serum (FBS; Gibco, 12763-025). After 3 cycles of
centrifugation, cells were allowed to attach overnight in Dul-
becco minimal essential medium (DMEM; Sigma-Aldrich,
D6429), supplemented with 2 mM glutamine (Sigma-Aldrich,
G7513), 100 U/ml penicillin and 100 mg/ml streptomycin,
15 mM HEPES (Sigma-Aldrich, H0887), 20% fetal bovine
serum. Cells were cultured in 6-well plates at 37�C in a humidi-
fied atmosphere of 5% CO2. The medium was renewed twice
weekly.

Patient and control individual

Skin fibroblasts were obtained from the patient III.7 of the first
identified Italian family affected by CMT2B, a 46-year old man,
whose clinical history and symptoms have been already
described.9 Cells were also obtained from a healthy control
individual age and sex matched.

Cells and culture conditions

Normal dermal human fibroblasts and dermal fibroblasts
derived from a CMT2B patient were maintained in DMEM
(Euroclone, ECB7501L) supplemented with 20% FBS (Euro-
clone, EUS0180L), 2 mM L-glutamine (Euroclone, ECB3000D),
100 units/ml penicillin-streptomycin (Euroclone, ECB3001D)
at 37�C in an atmosphere of 5% CO2:air. HeLa cells were main-
tained as previously described.65 Briefly, they were cultured in
DMEM as just described, except that 10% FBS was used. For
immunofluorescence experiments cells were seeded on cover-
slips placed in 12-well plates; 5 £ 104 HeLa cells and 5 £ 103

fibroblasts were seeded in each well. For western blot and cyto-
fluorometric analysis, 2 £ 105 HeLa cells were seeded in 6-well
plates and 3 £ 105 fibroblast cells were seeded in 10-cm dishes.
HeLa cells were transfected using Lipofectamine LTX (Life
Technologies, 15338500) with the indicated plasmids (500 ng
for 12-well and 1000 ng for 6-well) 24 h before harvesting for
western blot analysis and 48 h before fixing for
immunofluorescence.66

Plasmids

Plasmids encoding HA-tagged RAB7WT and the dominant neg-
ative RAB7T22N, the constitutively active RAB7Q67L and the
CMT2B-causing RAB7L129F, RAB7K157N, RAB7N161T, and
RAB7V162M mutant proteins, have been previously
described.14,15 The pcDNA3-HA plasmid was constructed by
inserting a DNA sequence coding for a 2xHA-tag into the KpnI
restriction site of the pCDNA3.1 (Invitrogen, V79020) and it
was used as empty vector in control transfections. pBABE-puro
mCherry-EGFP-LC3B was a gift from Jayanta Debnath
(Addgene, 22418).67

Reagents and antibodies

Bafilomycin A1 (Santa Cruz Biotechnology, sc-201550) was dis-
solved in DMSO. Hanks medium (ECB4006L), used as starva-
tion medium, was obtained from Euroclone. For western blot
analysis the following primary antibodies were used: anti-
RAB7 (Santa Cruz Biotechnology, sc-376362), anti-HA (Cova-
nce, MMS-101R), anti-LC3B (Nanotools, 0231–1000), anti-
GABARAP (MBL, M135-3), anti-SQSTM1/p62 (BD Bioscien-
ces, 610833), anti-tubulin/TUBA1A (Sigma-Aldrich, T5168)
and anti-MAPK1/ERK2 (Santa Cruz Biotechnology, sc-154).
For confocal immunofluorescence microscopy experiments, the
following primary antibodies were used: anti-HA (Roche,
11867423001), anti-LC3B (MBL, M152-3), anti-RAB7 (Cell
Signaling Technology, 9367), anti-ATG12 (Cell Signaling Tech-
nology, 2010) and anti-ATG5 (Sigma-Aldrich, A0731). The fol-
lowing secondary antibodies were used for western blot
experiments: anti-mouse (Santa Cruz Biotechnology, sc-2004)

(n = 3). (H) Intensitometric analysis of SQSTM1 and MAPK1 immunoblots shown in (G) were performed with NIH ImageJ. (I) The autophagic flux was calculated as the ratio
of normalized SQSTM1 between BAF and FM of the same sample. (J) Intensitometric analysis of GABARAP-II and MAPK1 immunoblots shown in (G) were performed with
NIH ImageJ. (K) The autophagic flux was calculated as the ratio of normalized GABARAP-II between BAF and FM of the same sample. Statistical analysis was performed
using one-way ANOVA test where normal fibroblasts were selected as referring sample for each condition (FM, ST and BAF). Means § SEM for each value are shown in
the graphs. � = p < 0.05; �� = p < 0.01; ��� = p < 0.001.
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and anti-rabbit (Santa Cruz Biotechnology, sc-2005) HRP-con-
jugated IgGs. The following secondary antibodies were used for
confocal microscopy experiments: anti-mouse Alexa Fluor 488-

conjugated (Life Technologies, A21202), anti-rabbit Alexa
Fluor 488-conjugated (Life Technologies, A21206), anti-mouse
Alexa Fluor 555-conjugated (Life Technologies, A31570), anti-

Figure 6. Analysis of autophagosome biogenesis in CMT2B fibroblasts. Statistical analysis was performed using one-way ANOVA test where normal fibroblasts were
selected as referring sample for each condition (full medium [FM] and serum starved [ST]). Means § SEM for each value are shown in the graphs. (A) Normal dermal
human fibroblasts and CMT2B patient-derived fibroblasts were incubated with full medium or serum starved medium for 6 sec. Immunoblots of ATG5, ATG12 and MAPK1
proteins. Representative images from 3 independent experiments are shown (n = 3). (B) Intensitometric analysis of ATG12–ATG5 complex (labeled with ATG5) and MAPK1
immunoblots shown in (A) were performed with NIH ImageJ. (C) Intensitometric analysis of ATG12–ATG5 complex (labeled with ATG12) and MAPK1 immunoblots shown
in (A) were performed with NIH ImageJ. (D) Representative images (n = 3) for NDHF and CMT2B fibroblasts labeled for ATG12 (green) and nuclei (blue). Scale bars are
25 mm. (E) The number of ATG12 puncta per cell was evaluated for each sample. (F) Representative images (n = 3) for NDHF and CMT2B fibroblasts labeled for ATG5
(green) and nuclei (blue). (G) The number of ATG5 puncta per cell was evaluated for each sample. Scale bars are 25 mm except for starved CMT2B where they are 10 mm.
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rabbit Alexa Fluor 555-conjugated (Life Technologies, A31572),
and anti-rat Alexa Fluor 594-conjugated (Life Technologies,
A21209).

Western blot analysis

Total lysates were obtained and treated as previously
described.68 Briefly, washed cellular pellet fractions were resus-
pended in MAPK lysis buffer made of 20 mM HEPES (PAA,
S11001), pH 7.5, 10 mM EGTA (Sigma-Aldrich, E4378),
40 mM beta-glycerophosphate (Sigma-Aldrich, G6501), 1%
NP-40 (Sigma-Aldrich, I3021), 2.5 mM MgCl2 (Sigma-Aldrich,
M2670), 2 mM orthovanadate (Sigma-Aldrich, S6508), 2 mM
NaF (Carlo Erba, 7681494), 1 mM DTT (IBI, IB21040), Roche
protease inhibitors cocktail (Roche Diagnostics, 05056489001).
Proteins were quantified by the Bradford assay and, before
loading, 5X Laemmli sample buffer was added to the lysates,
which were next incubated for 5 min at 95�C. Alternatively cells
were directly lysed in 1X Laemmli. Lysates were loaded on SDS-
PAGE polyacrylamide gels, transferred to Immobilon-P PVDF
membrane (Millipore, IPVH00010), probed with the appropri-
ate antibodies, and detected using enhanced chemolumines-
cence (ECL Prime; GE Healthcare, RPN2232). Images were
then acquired with a LAS 4000 imager (GE Healthcare, Italy,
Milan). Densitometric analysis of western blots was performed
with NIH ImageJ 1.43u (National Institutes of Health).

Immunofluorescence

Cells were cultured and treated as previously described.65

Briefly, they were washed with PBS, then fixed with 4% parafor-
maldehyde (Sigma-Aldrich, 47608) in 1X PBS for 20 min and
permeabilized with 0.2% Triton X-100 (Sigma-Aldrich, T8787)
for 10 min or 100 mg/ml digitonin solution (Life Technologies,
BN2006) for 20 min. Permeabilized cells were incubated with
the appropriate primary antibodies for 1 h, washed 3 times
with 1X PBS, incubated for 30 min with appropriate secondary
antibodies and then washed again 3 times in 1X PBS. Nuclei
were stained with a solution of 1.5 mM of 4’,6-diamidino-2-
phenylindole (DAPI; Sigma-Aldrich, D9542) in PBS for 5 min.
Coverslips were mounted in Fluorescence Mounting Medium
(Dako, S3023). Samples were visualized on a TSC SP5 confocal
microscope (Leica Microsystems, Germany, Mannheim)
installed on an inverted LEICA DMI 6000CS microscope (Leica
Microsystems, Germany, Mannheim) and equipped with an oil
immersion PlanApo 63 £ 1.4 NA objective. Images were
acquired using the LAS AF acquisition software (Leica
Microsystems).

Flow cytometry

Cells treated with full medium or starvation medium were har-
vested and resuspended in the same medium of the treatment
for FACS analysis to avoid autophagic flux changes. EGFP and
mCherry fluorescence signal were evaluated by flow cytometry
in LSR-II FACS (BD Biosciences, Italy, Milan), equipped with
488-nm and 561-nm laser according to Gump and Thorburn.40

A derived parameter with the ratio between mCherry and
EGFP signal was generated to measure the autophagic flux. For

each sample at least 5 £ 105 cells were acquired for each
experiment.

Dot count and colocalization rate

For the LC3B-positive dot count, we performed intensitometric
analysis of fluorescence using the Quantitation Module of
Volocity software (PerkinElmer Life Science).69 LC3B dots
area, Pearson correlation and colocalization rate were also mea-
sured by the Quantitation Module of Volocity software. Dot
count and colocalization rate were subjected to statistical analy-
sis. Measures were obtained by analyzing at least 400 cells/sam-
ple for at least 3 different experiments. Significance (P value)
was assessed by one-way ANOVA test.

TFRC degradation

Cells were incubated with 50 mg/ml cycloheximide (Sigma-
Aldrich, C7698) up to 8 h and then lysed. Lysates were sub-
jected to western blot analysis with anti-TFRC/transferrin
receptor antibody (mouse monoclonal G1/221/12 developed by
H.P. Hauri and obtained from the Developmental Studies
Hybridoma Bank, created by the NICHD of the NIH and main-
tained at The University of Iowa, Department of Biology, Iowa
City, IA, USA) to follow TFRC degradation.
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GDP guanosine diphosphate
GTP guanosine triphosphate
MAP1LC3B/LC3B microtubule associated protein 1 light

chain 3 beta
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