180 research outputs found

    Kelp forest restoration in Australia

    Get PDF
    Kelp forests dominate the rocky coasts of temperate Australia and are the foundation of the Great Southern Reef. Much like terrestrial forests, these marine forests create complex habitat for diverse communities of flora and fauna. Kelp forests also support coastal food-webs and valuable fisheries and provide a suite of additional ecosystem services. In many regions of Australia and around the world, kelp forests are in decline due to ocean warming, overgrazing, and pollution. One potential tool in the conservation and management of these important ecosystems is habitat restoration, the science and practice of which is currently undergoing substantial expansion. We summarize the present state of Australian kelp forests and emphasize that consideration of the initial drivers of kelp decline is a critical first step in restoration. With a focus on Australian examples, we review methods, implementation and outcomes of kelp forest restoration, and discuss suitable measures of success and the estimated costs of restoration activities. We propose a workflow and decision system for kelp forest restoration that identifies alternative pathways for implementation and acknowledges that under some circumstances restoration at scale is not possible or feasible. As a case study, we then apply the Society for Ecological Restoration’s 5-star evaluation to Operation Crayweed, Australia’s primary example of kelp forest restoration. Overall, no single method of kelp forest restoration is suitable for all situations, but outcomes can be optimized by ameliorating the driver(s) of kelp decline and achieving ongoing natural recruitment of kelp. Whilst scalability of kelp forest restoration to the seascape-scale remains a considerable challenge, the present review should provide a platform for future restoration efforts. However, it is also crucial to emphasize that the challenges of restoration place a high value on preventative conservation and protection of existing kelp forest ecosystems – prevention is invariably better than cure

    Implications of Charge Ordering for Single-Particle Properties of High-Tc Superconductors

    Full text link
    The consequences of disordered charge stripes and antiphase spin domains for the properties of the high-temperature superconductors are studied. We focus on angle-resolved photoemission spectroscopy and optical conductivity, and show that the many unusual features of the experimentally observed spectra can be understood naturally in this way. This interpretation of the data, when combined with evidence from neutron scattering and NMR, suggests that disordered and fluctuating stripe phases are a common feature of high-temperature superconductors.Comment: 4 pages, figures by fax or mai

    Effect of acute hypoxia on respiratory muscle fatigue in healthy humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Greater diaphragm fatigue has been reported after hypoxic versus normoxic exercise, but whether this is due to increased ventilation and therefore work of breathing or reduced blood oxygenation per se remains unclear. Hence, we assessed the effect of different blood oxygenation level on isolated hyperpnoea-induced inspiratory and expiratory muscle fatigue.</p> <p>Methods</p> <p>Twelve healthy males performed three 15-min isocapnic hyperpnoea tests (85% of maximum voluntary ventilation with controlled breathing pattern) in normoxic, hypoxic (SpO<sub>2 </sub>= 80%) and hyperoxic (FiO<sub>2 </sub>= 0.60) conditions, in a random order. Before, immediately after and 30 min after hyperpnoea, transdiaphragmatic pressure (P<sub>di,tw </sub>) was measured during cervical magnetic stimulation to assess diaphragm contractility, and gastric pressure (P<sub>ga,tw </sub>) was measured during thoracic magnetic stimulation to assess abdominal muscle contractility. Two-way analysis of variance (time x condition) was used to compare hyperpnoea-induced respiratory muscle fatigue between conditions.</p> <p>Results</p> <p>Hypoxia enhanced hyperpnoea-induced P<sub>di,tw </sub>and P<sub>ga,tw </sub>reductions both immediately after hyperpnoea (P<sub>di,tw </sub>: normoxia -22 ± 7% vs hypoxia -34 ± 8% vs hyperoxia -21 ± 8%; P<sub>ga,tw </sub>: normoxia -17 ± 7% vs hypoxia -26 ± 10% vs hyperoxia -16 ± 11%; all <it>P </it>< 0.05) and after 30 min of recovery (P<sub>di,tw </sub>: normoxia -10 ± 7% vs hypoxia -16 ± 8% vs hyperoxia -8 ± 7%; P<sub>ga,tw </sub>: normoxia -13 ± 6% vs hypoxia -21 ± 9% vs hyperoxia -12 ± 12%; all <it>P </it>< 0.05). No significant difference in P<sub>di,tw </sub>or P<sub>ga,tw </sub>reductions was observed between normoxic and hyperoxic conditions. Also, heart rate and blood lactate concentration during hyperpnoea were higher in hypoxia compared to normoxia and hyperoxia.</p> <p>Conclusions</p> <p>These results demonstrate that hypoxia exacerbates both diaphragm and abdominal muscle fatigability. These results emphasize the potential role of respiratory muscle fatigue in exercise performance limitation under conditions coupling increased work of breathing and reduced O<sub>2 </sub>transport as during exercise in altitude or in hypoxemic patients.</p

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax

    Abdominal muscle fatigue following exercise in chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with chronic obstructive pulmonary disease, a restriction on maximum ventilatory capacity contributes to exercise limitation. It has been demonstrated that the diaphragm in COPD is relatively protected from fatigue during exercise. Because of expiratory flow limitation the abdominal muscles are activated early during exercise in COPD. This adds significantly to the work of breathing and may therefore contribute to exercise limitation. In healthy subjects, prior expiratory muscle fatigue has been shown itself to contribute to the development of quadriceps fatigue. It is not known whether fatigue of the abdominal muscles occurs during exercise in COPD.</p> <p>Methods</p> <p>Twitch gastric pressure (TwT10Pga), elicited by magnetic stimulation over the 10<sup>th </sup>thoracic vertebra and twitch transdiaphragmatic pressure (TwPdi), elicited by bilateral anterolateral magnetic phrenic nerve stimulation were measured before and after symptom-limited, incremental cycle ergometry in patients with COPD.</p> <p>Results</p> <p>Twenty-three COPD patients, with a mean (SD) FEV<sub>1 </sub>40.8(23.1)% predicted, achieved a mean peak workload of 53.5(15.9) W. Following exercise, TwT<sub>10</sub>Pga fell from 51.3(27.1) cmH<sub>2</sub>O to 47.4(25.2) cmH<sub>2</sub>O (p = 0.011). TwPdi did not change significantly; pre 17.0(6.4) cmH<sub>2</sub>O post 17.5(5.9) cmH<sub>2</sub>O (p = 0.7). Fatiguers, defined as having a fall TwT10Pga ≥ 10% had significantly worse lung gas transfer, but did not differ in other exercise parameters.</p> <p>Conclusions</p> <p>In patients with COPD, abdominal muscle but not diaphragm fatigue develops following symptom limited incremental cycle ergometry. Further work is needed to establish whether abdominal muscle fatigue is relevant to exercise limitation in COPD, perhaps indirectly through an effect on quadriceps fatigability.</p

    Type D patients report poorer health status prior to and after cardiac rehabilitation compared to non-type D patients

    Get PDF
    Background: Type D personality is an emerging risk factor in coronary artery disease (CAD). Cardiac rehabilitation (CR) improves outcomes, but little is known about the effects of CR on Type D patients. Purpose: We examined (1) variability in Type D caseness following CR, (2) Type D as a determinant of health status, and (3) the clinical relevance of Type D as a determinant of health status compared to cardiac history. Methods: CAD patients (n = 368) participating in CR completed the Type D Scale, the Short-Form Health Survey 36 pre- and post-CR, and the Hospital Anxiety and Depression Scale pre-CR, to assess health status and depressive and anxious symptomatology, respectively. Results: The prevalence of Type D decreased from 26.6% to 20.7% (p = 0.012) following CR, but Type D caseness remained stable in 81% of patients. Health status significantly improved following CR [F(1,359) = 17.48, p < 0.001], adjusting for demographic and clinical factors and anxious and depressive symptoms. Type D patients reported poorer health status [F(1,359) = 10.40, p = 0.001], with the effect of Type D being stable over time [F(1,359) = 0.49, p = 0.48]. Patients with a cardiac history benefited less from CR [F(1,359) = 5.76, p = 0.02]. The influence of Type D on health status was larger compared to that for cardiac history, as indicated by Cohen's effect size index. Conclusions: Type D patients reported poorer health status compared to non-Type D patients pre- and post-CR. In the majority of patients, CR did not change Type D caseness, with Type D being associated with a stable and clinically relevant effect on outcome. These high-risk patients should

    Levodopa-Induced Dyskinesia Is Associated with Increased Thyrotropin Releasing Hormone in the Dorsal Striatum of Hemi-Parkinsonian Rats

    Get PDF
    Background Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition. Methodology/Principal Findings Quantitative real-time polymerase chain reaction (PCR) was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH) was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes. Conclusions/Significance TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.Morris K. Udall Center for Excellence in Parkinson’s Research at MGH/MITNational Institutes of Health (U.S.) (NIH NS38372)American Parkinson Disease Association, Inc.University of Alabama at BirminghamMassachusetts General HospitalNational Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIDDK/NIH grant R01 DK58148)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NINDS/NIH grant NS045231)Stanley H. and Sheila G. Sydney FundMichael J. Fox Foundation for Parkinson's Researc

    Topology of the C-Terminal Tail of HIV-1 gp41: Differential Exposure of the Kennedy Epitope on Cell and Viral Membranes

    Get PDF
    The C-terminal tail (CTT) of the HIV-1 gp41 envelope (Env) protein is increasingly recognized as an important determinant of Env structure and functional properties, including fusogenicity and antigenicity. While the CTT has been commonly referred to as the “intracytoplasmic domain” based on the assumption of an exclusive localization inside the membrane lipid bilayer, early antigenicity studies and recent biochemical analyses have produced a credible case for surface exposure of specific CTT sequences, including the classical “Kennedy epitope” (KE) of gp41, leading to an alternative model of gp41 topology with multiple membrane-spanning domains. The current study was designed to test these conflicting models of CTT topology by characterizing the exposure of native CTT sequences and substituted VSV-G epitope tags in cell- and virion-associated Env to reference monoclonal antibodies (MAbs). Surface staining and FACS analysis of intact, Env-expressing cells demonstrated that the KE is accessible to binding by MAbs directed to both an inserted VSV-G epitope tag and the native KE sequence. Importantly, the VSV-G tag was only reactive when inserted into the KE; no reactivity was observed in cells expressing Env with the VSV-G tag inserted into the LLP2 domain. In contrast to cell-surface expressed Env, no binding of KE-directed MAbs was observed to Env on the surface of intact virions using either immune precipitation or surface plasmon resonance spectroscopy. These data indicate apparently distinct CTT topologies for virion- and cell-associated Env species and add to the case for a reconsideration of CTT topology that is more complex than currently envisioned

    Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape

    Get PDF
    Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them
    corecore