82 research outputs found

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    Solar Hydrogen Generation from Lignocellulose

    Get PDF
    Photocatalytic reforming of lignocellulosic biomass is an emerging approach to produce renewable H2 . This process combines photo-oxidation of aqueous biomass with photocatalytic hydrogen evolution at ambient temperature and pressure. Biomass conversion is less energy demanding than water splitting and generates high-purity H2 without O2 production. Direct photoreforming of raw, unprocessed biomass has the potential to provide affordable and clean energy from locally sourced materials and waste

    Novel Approach to Meta-Analysis of Microarray Datasets Reveals Muscle Remodeling-related Drug Targets and Biomarkers in Duchenne Muscular Dystrophy.

    No full text
    Elucidation of new biomarkers and potential drug targets from high-throughput profiling data is a challenging task due to a limited number of available biological samples and questionable reproducibility of differential changes in cross-dataset comparisons. In this paper we propose a novel computational approach for drug and biomarkers discovery using comprehensive analysis of multiple expression profiling datasets.The new method relies on aggregation of individual profiling experiments combined with leave-one-dataset-out validation approach. Aggregated datasets were studied using Sub-Network Enrichment Analysis algorithm (SNEA) to find consistent statistically significant key regulators within the global literature-extracted expression regulation network. These regulators were linked to the consistent differentially expressed genes.We have applied our approach to several publicly available human muscle gene expression profiling datasets related to Duchenne muscular dystrophy (DMD). In order to detect both enhanced and repressed processes we considered up- and down-regulated genes separately. Applying the proposed approach to the regulators search we discovered the disturbance in the activity of several muscle-related transcription factors (e.g. MYOG and MYOD1), regulators of inflammation, regeneration, and fibrosis. Almost all SNEA-derived regulators of down-regulated genes (e.g. AMPK, TORC2, PPARGC1A) correspond to a single common pathway important for fast-to-slow twitch fiber type transition. We hypothesize that this process can affect the severity of DMD symptoms, making corresponding regulators and downstream genes valuable candidates for being potential drug targets and exploratory biomarkers
    corecore