134 research outputs found

    Carbon Stocks and Fluxes in Tropical Lowland Dipterocarp Rainforests in Sabah, Malaysian Borneo

    Get PDF
    Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+) good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha−1±3.8 (SD), including: Total aboveground (TAGC: 55%; 91.9 Mg C ha−1±2.9 SEM) and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha−1±0.5 SEM), deadwood (8%; 13.2 Mg C ha−1±3.5 SEM) and soil organic matter (SOM: 24%; 39.6 Mg C ha−1±0.9 SEM), understory vegetation (3%; 5.1 Mg C ha−1±1.7 SEM), standing litter (<1%; 0.7 Mg C ha−1±0.1 SEM) and fine root biomass (<1%; 0.9 Mg C ha−1±0.1 SEM). Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha−1 yr−1±0.1 SEM), and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha−1 yr−1±1.2 SEM). The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration

    Distress related to myocardial infarction and cardiovascular outcome: a retrospective observational study

    Get PDF
    Background During acute coronary syndromes patients perceive intense distress. We hypothesized that retrospective ratings of patients' MI-related fear of dying, helplessness, or pain, all assessed within the first year post-MI, are associated with poor cardiovascular outcome. Methods We studied 304 patients (61 ± 11 years, 85% men) who after a median of 52 days (range 12-365 days) after index MI retrospectively rated the level of distress in the form of fear of dying, helplessness, or pain they had perceived at the time of MI on a numeric scale ranging from 0 ("no distress") to 10 ("extreme distress"). Non-fatal hospital readmissions due to cardiovascular disease (CVD) related events (i.e., recurrent MI, elective and non-elective stent implantation, bypass surgery, pacemaker implantation, cerebrovascular incidents) were assessed at follow-up. The relative CVD event risk was computed for a (clinically meaningful) 2-point increase of distress using Cox proportional hazard models. Results During a median follow-up of 32 months (range 16-45), 45 patients (14.8%) experienced a CVD-related event requiring hospital readmission. Greater fear of dying (HR 1.21, 95% CI 1.03-1.43), helplessness (HR 1.22, 95% CI 1.04-1.44), or pain (HR 1.27, 95% CI 1.02-1.58) were significantly associated with an increased CVD risk without adjustment for covariates. A similarly increased relative risk emerged in patients with an unscheduled CVD-related hospital readmission, i.e., when excluding patients with elective stenting (fear of dying: HR 1.26, 95% CI 1.05-1.51; helplessness: 1.26, 95% CI 1.05-1.52; pain: HR 1.30, 95% CI 1.01-1.66). In the fully-adjusted models controlling for age, the number of diseased coronary vessels, hypertension, and smoking, HRs were 1.24 (95% CI 1.04-1.46) for fear of dying, 1.26 (95% CI 1.06-1.50) for helplessness, and 1.26 (95% CI 1.01-1.57) for pain. Conclusions Retrospectively perceived MI-related distress in the form of fear of dying, helplessness, or pain was associated with non-fatal cardiovascular outcome independent of other important prognostic factors

    The farnesoid X receptor regulates transcription of 3 beta-hydroxysteroid dehydrogenase type 2 in human adrenal cells

    Get PDF
    Recent studies have shown that the adrenal cortex expresses high levels of farnesoid X receptor (FXR), but its function remains not known. Herein, using microarray technology, we tried to identify candidate FXR targeting genes in the adrenal glands, and showed that FXR regulates 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) expression in human adrenocortical cells. We further demonstrated that FXR stimulated HSD3B2 promoter activity and have defined the cis-element responsible for FXR regulation of HSD3B2 transcription. Transfection of H295R adrenocortical cells with FXR expression vector effectively increased FXR expression levels and additional treatment with chenodeoxycholic acid (CDCA) caused a 25-fold increase in the mRNA for organic solute transporter alpha (OSTα), a known FXR target gene. HSD3B2 mRNA levels also increased following CDCA treatment in a concentration-dependent manner. Cells transfected with a HSD3B2 promoter construct and FXR expression vector responded to CDCA with a 20-fold increase in reporter activity compared to control. Analysis of constructs containing sequential deletions of the HSD3B2 promoter suggested a putative regulatory element between -166 and -101. Mutation of an inverted repeat between -137 and -124 completely blocked CDCA/FXR induced reporter activity. Chromatin immunoprecipitation assays further confirmed the presence of a FXR response element in the HSD3B2 promoter. In view of the emerging role of FXR agonists as therapeutic treatment of diabetes and certain liver diseases, the effects of such agonists on other FXR expressing tissues should be considered. Our findings suggest that in human adrenal cells, FXR increases transcription and expression of HSD3B2. Alterations in this enzyme would influence the capacity of the adrenal gland to produce corticosteroids

    Cardiac rehabilitation in Austria: long term health-related quality of life outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of cardiac rehabilitation programs is not only to prolong life but also to improve physical functioning, symptoms, well-being, and health-related quality of life (HRQL). The aim of this study was to document the long-term effect of a 1-month inpatient cardiac rehabilitation intervention on HRQL in Austria.</p> <p>Methods</p> <p>Patients (N = 487, 64.7% male, age 60.9 ± 12.5 SD years) after myocardial infarction, with or without percutaneous interventions, coronary artery bypass grafting or valve surgery underwent inpatient cardiac rehabilitation and were included in this long-term observational study (two years follow-up). HRQL was measured with both the MacNew Heart Disease Quality of Life Instrument [MacNew] and EuroQoL-5D [EQ-5D].</p> <p>Results</p> <p>All MacNew scale scores improved significantly (p < 0.001) and exceeded the minimal important difference (0.5 MacNew points) by the end of rehabilitation. Although all MacNew scale scores deteriorated significantly over the two year follow-up period (p < .001), all MacNew scale scores still remained significantly higher than the pre-rehabilitation values. The mean improvement after two years in the MacNew social scale exceeded the minimal important difference while MacNew scale scores greater than the minimal important difference were reported by 40-49% of the patients.</p> <p>Two years after rehabilitation the mean improvement in the EQ-5D Visual Analogue Scale score was not significant with no significant change in the proportion of patients reporting problems at this time.</p> <p>Conclusion</p> <p>These findings provide a first indication that two years following inpatient cardiac rehabilitation in Austria, the long-term improvements in HRQL are statistically significant and clinically relevant for almost 50% of the patients. Future controlled randomized trials comparing different cardiac rehabilitation programs are needed.</p

    A collaboratively derived international research agenda on legislative science advice

    Get PDF
    © 2019, The Author(s). The quantity and complexity of scientific and technological information provided to policymakers have been on the rise for decades. Yet little is known about how to provide science advice to legislatures, even though scientific information is widely acknowledged as valuable for decision-making in many policy domains. We asked academics, science advisers, and policymakers from both developed and developing nations to identify, review and refine, and then rank the most pressing research questions on legislative science advice (LSA). Experts generally agree that the state of evidence is poor, especially regarding developing and lower-middle income countries. Many fundamental questions about science advice processes remain unanswered and are of great interest: whether legislative use of scientific evidence improves the implementation and outcome of social programs and policies; under what conditions legislators and staff seek out scientific information or use what is presented to them; and how different communication channels affect informational trust and use. Environment and health are the highest priority policy domains for the field. The context-specific nature of many of the submitted questions—whether to policy issues, institutions, or locations—suggests one of the significant challenges is aggregating generalizable evidence on LSA practices. Understanding these research needs represents a first step in advancing a global agenda for LSA research

    Alternative splicing and the progesterone receptor in breast cancer

    Get PDF
    Progesterone receptor status is a marker for hormone responsiveness and disease prognosis in breast cancer. Progesterone receptor negative tumours have generally been shown to have a poorer prognosis than progesterone receptor positive tumours. The observed loss of progesterone receptor could be through a range of mechanisms, including the generation of alternatively spliced progesterone receptor variants that are not detectable by current screening methods. Many progesterone receptor mRNA variants have been described with deletions of various whole, multiple or partial exons that encode differing protein functional domains. These variants may alter the progestin responsiveness of a tissue and contribute to the abnormal growth associated with breast cancer. Absence of specific functional domains from these spliced variants may also make them undetectable or indistinguishable from full length progesterone receptor by conventional antibodies. A comprehensive investigation into the expression profile and activity of progesterone receptor spliced variants in breast cancer is required to advance our understanding of tumour hormone receptor status. This, in turn, may aid the development of new biomarkers of disease prognosis and improve adjuvant treatment decisions

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    The global biogeography of tree leaf form and habit.

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling
    corecore