4,531 research outputs found

    Entity Personalized Talent Search Models with Tree Interaction Features

    Full text link
    Talent Search systems aim to recommend potential candidates who are a good match to the hiring needs of a recruiter expressed in terms of the recruiter's search query or job posting. Past work in this domain has focused on linear and nonlinear models which lack preference personalization in the user-level due to being trained only with globally collected recruiter activity data. In this paper, we propose an entity-personalized Talent Search model which utilizes a combination of generalized linear mixed (GLMix) models and gradient boosted decision tree (GBDT) models, and provides personalized talent recommendations using nonlinear tree interaction features generated by the GBDT. We also present the offline and online system architecture for the productionization of this hybrid model approach in our Talent Search systems. Finally, we provide offline and online experiment results benchmarking our entity-personalized model with tree interaction features, which demonstrate significant improvements in our precision metrics compared to globally trained non-personalized models.Comment: This paper has been accepted for publication at ACM WWW 201

    Study of Single W production in e-gamma collisions through the decay lepton spectrum to probe gamma-WW couplings

    Full text link
    We investigate the effect of anomalous gamma-W-W couplings in e-gamma --> nu W through the angular and energy spectrum of the secondary leptons. Within the narrow-width approximation, a semi-analytical study of the secondary lepton energy-angle double distribution is considered. Utility of observables derived from this is demonstrated by considering the anomalous coupling, delta-kappa-gamma. Results of our investigation for typical ILC machine considered at Ecm = 300-1000 GeV re-affirms potential of this collider as a precision machine.Comment: Typos corrected, discussion added in section 2 for clarity, error in fig.2 corrected, figures 7 and 8 replaced with better resolutio

    EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient Arrhythmia Classification

    Full text link
    We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification. We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption. The proposed architecture leverages the energy efficiency of transistors operating in the subthreshold region, eliminating the need for analog-to-digital converters (ADC) and static random access memory (SRAM). The system design includes a novel analog sequential Multiply-Accumulate (MAC) circuit that mitigates process, supply voltage, and temperature variations. Experimental evaluations on PhysioNet's MIT-BIH and PTB Diagnostics datasets demonstrate the effectiveness of the proposed method, achieving average balanced accuracy of 95% and 94.25% for intra-patient arrhythmia classification and myocardial infarction (MI) classification, respectively. This innovative approach presents a promising avenue for developing low-power arrhythmia classification systems with enhanced accuracy and transferability in biomedical applications.Comment: Accepted on IEEE Biomedical Circuits and Systems (BioCAS) 202

    Challenges to the development of antigen-specific breast cancer vaccines

    Get PDF
    Continued progress in the development of antigen-specific breast cancer vaccines depends on the identification of appropriate target antigens, the establishment of effective immunization strategies, and the ability to circumvent immune escape mechanisms. Methods such as T cell epitope cloning and serological expression cloning (SEREX) have led to the identification of a number target antigens expressed in breast cancer. Improved immunization strategies, such as using dendritic cells to present tumor-associated antigens to T lymphocytes, have been shown to induce antigen-specific T cell responses in vivo and, in some cases, objective clinical responses. An outcome of successful tumor immunity is the evolution of antigen-loss tumor variants. The development of a polyvalent breast cancer vaccine, directed against a panel of tumor-associated antigens, may counteract this form of immune escape

    The cancer translational research informatics platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the pressing need for the creation of applications that facilitate the aggregation of clinical and molecular data, most current applications are proprietary and lack the necessary compliance with standards that would allow for cross-institutional data exchange. In line with its mission of accelerating research discoveries and improving patient outcomes by linking networks of researchers, physicians, and patients focused on cancer research, caBIG (cancer Biomedical Informatics Grid™) has sponsored the creation of the caTRIP (Cancer Translational Research Informatics Platform) tool, with the purpose of aggregating clinical and molecular data in a repository that is user-friendly, easily accessible, as well as compliant with regulatory requirements of privacy and security.</p> <p>Results</p> <p>caTRIP has been developed as an N-tier architecture, with three primary tiers: domain services, the distributed query engine, and the graphical user interface, primarily making use of the caGrid infrastructure to ensure compatibility with other tools currently developed by caBIG. The application interface was designed so that users can construct queries using either the Simple Interface via drop-down menus or the Advanced Interface for more sophisticated searching strategies to using drag-and-drop. Furthermore, the application addresses the security concerns of authentication, authorization, and delegation, as well as an automated honest broker service for deidentifying data.</p> <p>Conclusion</p> <p>Currently being deployed at Duke University and a few other centers, we expect that caTRIP will make a significant contribution to further the development of translational research through the facilitation of its data exchange and storage processes.</p

    Morphology, Mechanical Performance and Nanoindentation Behavior of Injection Molded PC/ABS-MWCNT Nanocomposites

    Full text link
    "This is the peer reviewed version of the following article: Wegrzyn, M., Sahuquillo, O., Benedito, A., & Gimenez, E. (2015). Morphology, mechanical performance, and nanoindentation behavior of injection molded PC/ABS&#8208;MWCNT nanocomposites. Journal of Applied Polymer Science, 132(22), which has been published in final form at https://doi.org/10.1002/app.42014. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] In this work, nanocomposites of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with various loads of multiwall carbon nanotubes (MWCNT) are investigated. Material is previously formed by masterbatch dilution approach and further processed by injection molding at various velocities. Microscopic characterization of nanocomposites morphology reveals stronger dependence of MWCNT dispersion on processing parameters at higher nanofiller load. Dispersion of carbon nanotubes at various distances from the injection gate is studied by Raman spectroscopy showing lower deviation at elevated injection velocity. Nanoindentation results that are in agreement with uniaxial tensile testing show a slight decrease of nanocomposites¿ mechanical performance at 3.0 wt % MWCNT in samples injected at reduced velocity. This is explained by the increase of agglomeration behavior at these conditions.This work is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363.Wegrzyn, M.; Sahuquillo, O.; Benedito, A.; Giménez Torres, E. (2015). Morphology, Mechanical Performance and Nanoindentation Behavior of Injection Molded PC/ABS-MWCNT Nanocomposites. Journal of Applied Polymer Science. 132(22):1-8. https://doi.org/10.1002/app.42014S1813222Alig, I., Lellinger, D., Engel, M., Skipa, T., & Pötschke, P. (2008). Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments. Polymer, 49(7), 1902-1909. doi:10.1016/j.polymer.2008.01.073Sathyanarayana, S., Wegrzyn, M., Olowojoba, G., Benedito, A., Gimenez, E., Huebner, C., & Henning, F. (2013). Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether)/polystyrene – Processing and characterization. Express Polymer Letters, 7(7), 621-635. doi:10.3144/expresspolymlett.2013.59Xiong, Z.-Y., Wang, L., Sun, Y., Guo, Z.-X., & Yu, J. (2013). Migration of MWCNTs during melt preparation of ABS/PC/MWCNT conductive composites via PC/MWCNT masterbatch approach. Polymer, 54(1), 447-455. doi:10.1016/j.polymer.2012.11.044Sun, Y., Guo, Z.-X., & Yu, J. (2010). Effect of ABS Rubber Content on the Localization of MWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites. Macromolecular Materials and Engineering, 295(3), 263-268. doi:10.1002/mame.200900242Göldel, A., Kasaliwal, G. R., Pötschke, P., & Heinrich, G. (2012). The kinetics of CNT transfer between immiscible blend phases during melt mixing. Polymer, 53(2), 411-421. doi:10.1016/j.polymer.2011.11.039Tiusanen, J., Vlasveld, D., & Vuorinen, J. (2012). Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts. Composites Science and Technology, 72(14), 1741-1752. doi:10.1016/j.compscitech.2012.07.009Ma, P.-C., Siddiqui, N. A., Marom, G., & Kim, J.-K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367. doi:10.1016/j.compositesa.2010.07.003Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018Pegel, S., Pötschke, P., Petzold, G., Alig, I., Dudkin, S. M., & Lellinger, D. (2008). Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer, 49(4), 974-984. doi:10.1016/j.polymer.2007.12.024Villmow, T., Pegel, S., Pötschke, P., & Wagenknecht, U. (2008). Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Composites Science and Technology, 68(3-4), 777-789. doi:10.1016/j.compscitech.2007.08.031Richter, S., Saphiannikova, M., Jehnichen, D., Bierdel, M., & Heinrich, G. (2009). Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts. Express Polymer Letters, 3(12), 753-768. doi:10.3144/expresspolymlett.2009.94Park, D. H., Yoon, K. H., Park, Y.-B., Lee, Y. S., Lee, Y. J., & Kim, S. W. (2009). Electrical resistivity of polycarbonate/multiwalled carbon nanotube composites under varying injection molding conditions. Journal of Applied Polymer Science, 113(1), 450-455. doi:10.1002/app.29989Chandra , A. Kramschuster , A. J. Hu , X. Turng , S. 2007 2184Lellinger, D., Xu, D., Ohneiser, A., Skipa, T., & Alig, I. (2008). Influence of the injection moulding conditions on the in-line measured electrical conductivity of polymer-carbon nanotube composites. physica status solidi (b), 245(10), 2268-2271. doi:10.1002/pssb.200879619Li, S.-N., Li, B., Li, Z.-M., Fu, Q., & Shen, K.-Z. (2006). Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding. Polymer, 47(13), 4497-4500. doi:10.1016/j.polymer.2006.04.051Schuh, C. A. (2006). Nanoindentation studies of materials. Materials Today, 9(5), 32-40. doi:10.1016/s1369-7021(06)71495-xOliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583. doi:10.1557/jmr.1992.1564Cakmak, U. D., Schöberl, T., & Major, Z. (2011). Nanoindentation of polymers. Meccanica, 47(3), 707-718. doi:10.1007/s11012-011-9481-6VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F., & Meyers, G. F. (2001). Nanoindentation of polymers: an overview. Macromolecular Symposia, 167(1), 15-44. doi:10.1002/1521-3900(200103)167:13.0.co;2-tPharr, G. M., Strader, J. H., & Oliver, W. C. (2009). Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. Journal of Materials Research, 24(3), 653-666. doi:10.1557/jmr.2009.0096Yao, C.-K., Liao, J.-D., Chung, C.-W., Sung, W.-I., & Chang, N.-J. (2012). Porous chitosan scaffold cross-linked by chemical and natural procedure applied to investigate cell regeneration. Applied Surface Science, 262, 218-221. doi:10.1016/j.apsusc.2012.05.128Sonnenfeld, A., Roth, C., Dimitrova, Z., Spillmann, A., & von Rohr, P. R. (2009). Plasma Enhanced Chemical Vapor Deposition on Particulate Solid-State Materials for Improved Powder Processing. Plasma Processes and Polymers, 6(S1), S860-S863. doi:10.1002/ppap.200932202Shokrieh, M. M., Hosseinkhani, M. R., Naimi-Jamal, M. R., & Tourani, H. (2013). Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polymer Testing, 32(1), 45-51. doi:10.1016/j.polymertesting.2012.09.001Chakraborty, H., Sinha, A., Mukherjee, N., Ray, D., & Protim Chattopadhyay, P. (2013). A study on nanoindentation and tribological behaviour of multifunctional ZnO/PMMA nanocomposite. Materials Letters, 93, 137-140. doi:10.1016/j.matlet.2012.11.075Shen, L., Phang, I. Y., Liu, T., & Zeng, K. (2004). Nanoindentation and morphological studies on nylon 66/organoclay nanocomposites. II. Effect of strain rate. Polymer, 45(24), 8221-8229. doi:10.1016/j.polymer.2004.09.062Wegrzyn, M., Juan, S., Benedito, A., & Giménez, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science, 130(3), 2152-2158. doi:10.1002/app.39412Briscoe, B. J., Fiori, L., & Pelillo, E. (1998). Nano-indentation of polymeric surfaces. Journal of Physics D: Applied Physics, 31(19), 2395-2405. doi:10.1088/0022-3727/31/19/006Vega, J. F., Martínez-Salazar, J., Trujillo, M., Arnal, M. L., Müller, A. J., Bredeau, S., & Dubois, P. (2009). Rheology, Processing, Tensile Properties, and Crystallization of Polyethylene/Carbon Nanotube Nanocomposites. Macromolecules, 42(13), 4719-4727. doi:10.1021/ma900645fBokobza, L., & Zhang, J. (2012). Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters, 6(7), 601-608. doi:10.3144/expresspolymlett.2012.63Gupta, M., & Wang, K. K. (1993). Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: Simulated and experimental results. Polymer Composites, 14(5), 367-382. doi:10.1002/pc.750140503Abbasi, S., Carreau, P. J., & Derdouri, A. (2010). Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties. Polymer, 51(4), 922-935. doi:10.1016/j.polymer.2009.12.041Sahin, S., & Yayla, P. (2005). Effects of testing parameters on the mechanical properties of polypropylene random copolymer. Polymer Testing, 24(5), 613-619. doi:10.1016/j.polymertesting.2005.03.002Chasiotis, I., Chen, Q., Odegard, G. M., & Gates, T. S. (2005). Structure-property relationships in polymer composites with micrometer and submicrometer graphite platelets. Experimental Mechanics, 45(6), 507-516. doi:10.1007/bf02427904Penumadu, D., Dutta, A., Pharr, G. M., & Files, B. (2003). Mechanical properties of blended single-wall carbon nanotube composites. Journal of Materials Research, 18(8), 1849-1853. doi:10.1557/jmr.2003.025

    SPELLing out energy leaks: Aiding developers locate energy inefficient code

    Get PDF
    Although hardware is generally seen as the main culprit for a computer's energy usage, software too has a tremendous impact on the energy spent. Unfortunately, there is still not enough support for software developers so they can make their code more energy-aware.This paper proposes a technique to detect energy inefficient fragments in the source code of a software system. Test cases are executed to obtain energy consumption measurements, and a statistical method, based on spectrum-based fault localization, is introduced to relate energy consumption to the source code. The result of our technique is an energy ranking of source code fragments pointing developers to possible energy leaks in their code. This technique was implemented in the SPELL toolkit.Finally, in order to evaluate our technique, we conducted an empirical study where we asked participants to optimize the energy efficiency of a software system using our tool, while also having two other groups using no tool assistance and a profiler, respectively. We showed statistical evidence that developers using our technique were able to improve the energy efficiency by 43% on average, and even out performing a profiler for energy optimization. (C) 2019 Elsevier Inc. All rights reserved.This work is funded by the ERDF -European Regional Development Fund through the Operational Programme for Competitiveness and Internationalization -COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the Portuguese funding agency, FCT -Fundacao para a Ciencia e a Tecnologia within project POCI010145FEDER016718, UID/EEA/50014/2013, and by FCT grant SFRH/BD/132485/2017. This work is also supported by operation Centro010145FEDER000019 -C4 -Centro de Competencias em Cloud Computing, cofinanced by the European Regional Development Fund (ERDF) through the Programa Operacional Regional do Centro (Centro 2020), in the scope of the Sistema de Apoio a Investigacao Cientifica e Tecnologica -Programas Integrados de IC&DT, and the first author was financed by post-doc grant referencia C4_SMDS_L1-1_D

    Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.

    Get PDF
    Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated&nbsp;burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated&nbsp;chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals
    corecore