
SPELLing Out Energy Leaks
Aiding Developers Locate Energy Inefficient Code

Rui Pereirab,1, Tiago Carçãob, Marco Coutob, Jácome Cunhac, João Paulo
Fernandesd, João Saraivab

aHASLab/INESC TEC & Universidade do Minho, Portugal
bC4 — Centro de Competências em Cloud Computing (C4-UBI), Universidade da Beira

Interior, Rua Marquês d’Ávila e Bolama, 6201-001, Covilhã, Portugal
cNOVA LINCS & Universidade do Minho, Portugal

dCISUC & Universidade de Coimbra, Portugal

Abstract

Although hardware is generally seen as the main culprit for a computer’s en-
ergy usage, software too has a tremendous impact on the energy spent. Unfor-
tunately, there is still not enough support for software developers so they can
make their code more energy-aware.

This paper proposes a technique to detect energy inefficient fragments in
the source code of a software system. Test cases are executed to obtain en-
ergy consumption measurements, and a statistical method, based on spectrum-
based fault localization, is introduced to relate energy consumption to the source
code. The result of our technique is an energy ranking of source code fragments
pointing developers to possible energy leaks in their code. This technique was
implemented in the SPELL toolkit.

Finally, in order to evaluate our technique, we conducted an empirical study
where we asked participants to optimize the energy efficiency of a software
system using our tool, while also having two other groups using no tool assistance
and a profiler, respectively. We showed statistical evidence that developers using
our technique were able to improve the energy efficiency by 43% on average, and
even out performing a profiler for energy optimization.

1. Introduction

To detect inefficiency at runtime, many programming languages offer ad-
vanced profilers which locate source code fragments which are possibly respon-
sible for such inefficiencies. In the same line of reasoning, while IDEs have
traditionally incorporated powerful advanced type and modular systems, test-
ing and debugging frameworks, and other tools to improve software developers

Email addresses: ruipereira@di.uminho.pt (Rui Pereira), tcarcao@di.uminho.pt
(Tiago Carção), marco.l.couto@inesctec.pt (Marco Couto), jacome@di.uminho.pt
(Jácome Cunha), jpf@dei.uc.pt (João Paulo Fernandes), jas@di.uminho.pt (João Saraiva)

Preprint submitted to Elsevier November 13, 2020

productivity and effectiveness, there is no concrete evidence that this trend has
included techniques to optimize or even analyze source code energy consump-
tion [1, 2].

In fact, software developers are keen on developing energy-efficient soft-
ware [1, 2], and a long list of (mostly recent) efforts that include [3, 4, 5, 6, 7, 8,
9, 10, 11, 12] have tried to provide developers with the libraries, tools, techniques
and data to support energy-aware development. Even considering these efforts,
the green computing research area is still at an early stage where research is-
sues, challenges and opportunities abound [13, 14, 15]. Researchers [16, 17] also
argue that there are two main problems in regards to energy efficient software
development: the lack of knowledge and the lack of tools.

Indeed, if we compare energy-aware software engineering with the long last-
ing series of engineering techniques that aim at helping software developers
quickly construct correct programs with optimal runtime we see an obvious
deficit. While the latter includes compiler constructions such as partial and/or
runtime compilation, advanced garbage collectors or parallel execution, the for-
mer is still clearly more modest in terms of achievements [14].

In the same line of reasoning, while IDEs have traditionally incorporated
powerful advanced type and modular systems, testing and debugging frame-
works, and other tools to improve software developers productivity and effec-
tiveness, there is no concrete evidence that this trend has included techniques
to optimize or even analyze source code energy consumption [1, 2].

This paper defines a technique, named SPELL - SPectrum-based Energy
Leak Localization, that has been implemented in a tool, to determine red (energy
inefficient) areas in software. The idea of this approach has been previously
proposed in [18, 19, 20]. In this paper, we consider an energy leak synonymous to
an energy inefficiency. In this context, a parallel is made between the detection
of anomalies in the energy consumption of software during program execution,
and the detection of faults in the execution of a program. Having this parallelism
established, we adapted fault detection techniques, often used to investigate
software bugs in program executions, to detect energy faults in programs.

The software system to be analyzed is executed with a set of test cases, and
components of such system (for example, packages, functions, loops, etc.) are
instrumented to estimate/measure the energy consumption at runtime. Ineffi-
cient energy consumption, the so-called energy leaks, are interpreted in SPELL
as program faults, and we adapt Spectrum-based Fault Localization (SFL) tech-
niques [21, 22] to relate energy consumption to the system’s source code. Our
analysis associates different percentage of responsibility for the energy consumed
to the different components of the underlying system. Thus, the result of our
analysis is a ranking of components sorted by their likelihood of being respon-
sible for energy leaks, essentially pinpointing and prioritizing the developer’s
attention on the most critical red spots in the analyzed system. Thus, giving
more useful information to have better support in making decisions of what
parts of the system need to be optimized, ultimately helping place a new step-
ping stone for energy-aware programming.

Our proposed technique is language independent, allowing the analysis of

2

programs written in any programming language. Currently, it has been de-
veloped and focused on desktop and server systems only. A slight adaptation
would be required to extend it into the mobile phone domain. Additionally,
it is also context independent, allowing it to be applied to detect red areas on
various levels of code. This means we could use it to detect the inefficiencies at
different granularity levels, be that packages, classes, methods, functions, lines
of code, etc. Even more so, the technique allows the use of different hardware
component’s energy values (CPU, DRAM, HDD, GPU, etc.) to compute the
energy spent by a program, and may return the analysis of one specific factor
(energy, time, or frequency of usage), or a global analysis considering all three
factors.

Supported by our tool, our technique was able to identify potential energy
leaks in the source code of concrete Java projects. Based on this identification,
a set of expert Java programmers were then asked to improve the (energy)
efficiency of those projects. The analysis of their success in doing so provided
statistical evidence that the programs they ended up altering indeed consume
less energy that the ones they were originally given, with an improvement, for
different projects, between 15% and 74%.

Complementary, we compared the energy efficiency of the programs obtained
as explained above against programs obtained from the original ones but by
programmers working without the knowledge of any energy leak. From such
comparison, we found statistical evidence that the difference is significant, in
favor of the former: their performance is between 14% and 38% better.

A recurrent debate when optimizing energy consumption in software is whether
a performance optimization is always an energy consumption optimization. In-
deed, the Energy equation (Energy = Power x Time) does indicate that re-
ducing time would imply a reduction in energy. However, the Power variable
of the equation, not to be assumed as a constant, also has an impact along-
side Time. Therefore, conclusions regarding this issue tend to diverge, where
some works do support that optimizing for energy is optimizing for perfor-
mance [5], while many others have studied contexts where the opposite was
observed [4, 23, 24, 12, 25, 26, 27, 28, 29, 30]. This suggests that only looking
at performance might not be enough for optimizing energy, and consequently
performance profilers might also not be enough. Indeed we will show this is the
case in Section 4.

In order to shed light and contribute to this debate with a particular focus
on our context, we have complementary analyzed and compared our tool with
an off the shelf profiler. This means that the experts were asked to improve the
efficiency of the projects we considered with the guidance of SPELL and with the
guidance of such profiler. Our analysis provided statistical evidence that experts
with access to located energy leaks were able to better optimize the energy
consumption of those projects than when using a profiler, with improvements
between 2% and 72%.

The contributions of this paper are essentially four-fold:

• A language independent technique to locate energy inefficient components

3

in the source code of software systems. This technique is also indepen-
dent of the approach used to measure (via external devices [3, 31, 32]) or
estimate (via predictive models [33, 34]) energy consumption (Section 2).

• An implementation of our technique as a Java-based analysis tool (Sec-
tion 3).

• An implementation of two (optional) auxiliary tools to facilitate: the en-
ergy measurements on Java programs (based on Intel’s Runtime Average
Power Limit (RAPL) technology [35, 31]), and the SPELL matrix con-
struction. These are provided within the SPELL Toolkit along with the
Java implementation of SPELL itself (Section 3).

• An evaluation of our technique and tool by detecting energy leaks in an
empirical study. Programmers following SPELL recommendations were
able to optimize programs to have energy gains of 43% on average (Sec-
tion 4).

Furthermore, we discuss an overview of related research work in Section 5,
and conclude our paper with final comments in Section 6.

2. Spectrum-based Energy Leak Localization

In this section we present our language independent technique, termed SPELL
– or Spectrum-based Energy Leak Localization – that localizes red areas in
source code. This technique combines energy measurements, program tracing,
and a state-of-the-art fault localization technique, to detect source code compo-
nents (such as methods) which are more likely to be responsible for abnormal
or excessive energy consumptions. It follows a dynamic-oriented approach, i.e.,
it collects information of the software under analysis during its execution under
normal usage scenarios or test cases.

We divided the definition of the technique into 4 parts. First, in Section 2.1,
we thoroughly explain the fault localization concepts and the Spectrum-based
Fault Localization technique (SFL). Building on such concepts, we then detail
in Section 2.2 the changes performed to the core components of SFL, in order
to collect information for each test/usage scenario regarding program tracings
and energy consumption. Next, we define in Section 2.3 our concepts for how
to analyze such information and reason about the energy impact of each source
code component. Finally, to facilitate the explanation of our technique, we
present a concrete example in Section 2.4, with all steps detailed.

Additionally, our technique is implemented within a Java toolkit, called the
SPELL toolkit, which is presented in Chapter 3.

2.1. Spectrum-based Fault Localization

Our technique is based on spectrum-based fault localization [21, 22], a sta-
tistical analysis technique to detect faults in a program based on its implemen-
tation (source code).

4

In particular, SFL uses a hit spectrum (set of flags which reflect if a cer-
tain component is used or not in a particular run of the software) [21, 36] to
build a matrix A of dimension n×m, where m columns represent the different
components (e.g. methods, classes) of a program during n independent test
executions. A component can be anything being analyzed, be this a program,
a package, a class, a method, or even a line of code. An entry ai,j in A of value
0 means that component j was not executed in test execution i, and an entry
of value 1 means that it was. Complementing the hit spectrum, SFL also uses
a vector e, with n elements, each of which indicates whether each of the n tests
succeeded or not.

Equation 1 illustrates the generic format of A and e, and Equation 2 presents
a concrete (simulated) example of the application of SFL with 3 test cases
executed on a program with 4 components. The first line of the matrix A in the
example, e.g., reads as: in the execution of the first test case, components c1,
c2 and c4 were executed and component c3 was not. The first element of e, i.e.,
the value 0, indicates that the execution of the first test case met its expected
output (or in other words, that it did not fail).

m components error detection

n spectra

⎡
⎢⎢⎢⎣
a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m
...

...
. . .

...
an,1 an,2 · · · an,m

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
e1
e2
...
en

⎤
⎥⎥⎥⎦ (1)

⎡
⎣1 1 0 1
1 0 1 1
1 0 1 0

⎤
⎦

⎡
⎣01
1

⎤
⎦ (2)

Using (A, e), SFL tries to find which components are the most likely to
be faulty by calculating: n11(j): the number of failed runs (indicated by the
second 1 subscript) where component j was involved (indicated by the first 1
subscript); n10(j): the number of successful runs in which component j was
involved; and n01(j): the number of failed runs where component j was not
involved. This produces a 3×mmatrixN , wherem is the number of components
in the program, and whose first/second/third line holds, for each component
j ∈ {1, ...,m}, n11(j), n10(j) and n01(j), respectively.

Equation 3 shows the generic formulation of N and Equation 4 shows its
instance for the illustration in Equation 2. Finally, SFL applies the Ochiai
coefficient of similarity (Equation 5) to each component j ∈ [1..m] to indicate
which component has the highest probability of being faulty. This produces the
matrix S given in Equation 6.

m components⎡
⎣n11(1) n11(2) · · · n11(m)
n10(1) n10(2) · · · n10(m)
n01(1) n01(2) · · · n01(m)

⎤
⎦ (3)

5

⎡
⎣2 0 2 1
1 1 0 1
0 2 0 1

⎤
⎦ (4)

Sj =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(5)

4 components
S

[
0.82 0.0 1.0 0.5

] (6)

Analyzing the elements of matrix S, we finally conclude that component 3
is the most likely to be faulty. The rationale for this is that such component
was involved in all the test executions that failed and was not involved in the
test execution that succeeded.

In our proposed technique, that we introduce in the following subsections,
we also rely on the spectrum of a program, which allows us to discriminate the
usage of each component, and in what cases it was used, further extracting more
information of the components being analyzed.

2.2. Static Model Formalization

Similarly to SFL, the technique that we propose, SPELL, relies on an input
matrix A, with dimension n × m, where the n lines also correspond to the
number of test executions, and the m columns to the number of components.1

It is very important to note that by test we mean test scenarios which replicate
a real-world usage of the application, i.e., system tests. The quality of the tested
scenarios is also important because only with tests which stress the components
with different inputs replicating real-world scenarios, can one extract reliable
information.

Differently to SFL, however, elements of A actually hold triples. Each such
element λi,j is defined as follows:

{
(0, 0, 0), if component j was not executed in test i;
(Ei,j , Ni,j , Ti,j), otherwise.

The execution data of each component is therefore segmented in 3 cate-
gories: E for energy consumption, N for the number of executions and T for
the execution time.

In the energy consumption category, E, values of the energy consumed by
different hardware components may be present, for example: CPU (ECPU),
DRAM (EDRAM), fans (Efans), HDD (Edisk), GPU (EGPU), etc. At least one
hardware component must be present.

The energy consumption values are expressed in the energy unit Joules (J),
and the execution time is represented in milliseconds (ms). Finally, N holds the
number of executions (cardinality).

1For a complete example please refer to Section 2.4.

6

2.3. Energy Leak Localization

Now that we have our spectrum model, we can begin extracting useful in-
formation and localizing the energy leaks.

While in SFL there is an error vector to reason about the validity of the
output obtained by a test, the SPELL analysis does not receive an error vector.
This is because there is still no known understanding to signal what can be
seen as an excess of energy consumption. Therefore, an error vector needs to be
calculated, and we define two different perspectives to calculate error vectors and
similarities. These perspectives, that we describe next, are called Component
Category Similarity and Global Similarity. An interesting consideration to draw
here is that use of the error vector cannot result in a binary decision (pass or
fail) for a test execution; the criterion has to use continuous values to represent
the greenness of a test.

Component Category Similarity. The construction of this oracle was
based on the regulation of greenhouse gas emissions for countries. After assess-
ing how much is the total emission of gases in the different years, and depending
on what each country contributed to these total emissions, each country is as-
signed a percentage of responsibility. We try to establish an analogy, where the
n years are the different tests, and the m countries are the different components
with the total for each category (energy, cardinality, and execution time), with
the goal of assigning responsibilities to each component comparing with the
total value.

To construct the error vector, we sum up all the values of all m components
for each test i ∈ {1, ..., n}, shown in Equation 7:

ei = (

m∑
j=1

Ei,j ,

m∑
j=1

Ni,j ,

m∑
j=1

Ti,j) (7)

As this is applied for all tests, we obtain Equation 8, a vector of triples called
e:2

e = [e1 e2 . . . en]
T (8)

With (A, e) at hand, we now have an oracle model, and can begin localizing
the energy leaks. Continuing our analogy of gas emissions, we need to relate
the (3-category) data of each component with the total data. This is achieved
comparing each component in A with e. The main goal is to obtain a sim-
ple structure containing the similarity between each column j ∈ {1, ...,m} in A
(which refers to the resources spent by component j) and vector e (the total
amount of resources that were spent). This similarity can be interpreted as how
much component j is responsible for each execution information of the total
vector.

Assuming that A(j) projects column j from matrix A, the similarity between
component j and e is defined as φj , where:

2We use superscript T as the transpose of a matrix.

7

φj = (α1(A(j), e), α2(A(j), e), α3(A(j), e)) (9)

Finally, assuming that for x ∈ {1, 2, 3}3, A(j, x) and e(x) project the x-th
element from all the triples of A(j) and e, respectively, we define:

αx(A(j), e) =

n∑
i=1

A(j, x)i

n∑
i=1

e(x)i

(10)

To calculate the Ochiai coefficient similarity, we need to now be able to
distinguish between a passed and a failed test. As previously stated, we cannot
binarily define excess energy consumption. Thus, for this formula, we focused
on the Jaccard similarity coefficient [37]. This coefficient is well-known and
widely used to calculate the similarity coefficient between two vectors and has
been used for a long period of time in the biology domain [38, 39], and is one
of the most simple coefficients to implement. Using this definition, we calculate
the similarity coefficient for each of the component’s constituents E, N and T .

Applying this similarity function to all components j ∈ {1, ...,m} will result
in a row vector which represents, for each component and each test execution,
their influence in the overall context for a given perspective (E, N or T). The
higher the similarity (the closer it is to 1) the more responsible it is in that
category.

Global Similarity. Using the similarity of each component category, we
can have a parametrized analysis. However, it is also useful to have a value
encoding the global similarity, allowing a numerical and global comparison be-
tween the different components.

The energy category E of a software component j can contain information
on different hardware components such as CPU, DRAM, GPU, fans, and disk.
These hardware components have different power consumption patterns that
are known in advance. So, this information should be standardized according
to the spontaneity/variation of those hardware components.

Let us assume the following scenario:

• For a concrete test suite, software components 1 and 2 showed the same
total energy consumption;

• However, they rely differently on hardware components A and B, wherein
A on average consumes more power than B;

• The energy of component 1 is only due to the use of component A;

• The energy of component 2 is only due to the use of component B;

3Here, indexes 1, 2 and 3 represent E, N and T respectively.

8

In spite of having the same consumption value, software components 1 and
2 should have their global similarity value influenced in different ways. As
hardware component A has a higher average power consumption, component 1 is
likely to contribute more to energy consumption than component 2 in scenarios
that are not captured by the test suite in use.

A multiplicative factor can be defined for each hardware component and
applied to allow standardization. Table 1 details the average power consumption
for each component4.

Table 1: Average W consumption for hardware components

Component name Average power consumption (W)

CPU 102.5
DRAM 3.75
Fans 3.3
Hard Drive 7.5
GPU 187.5

Observing, e.g., that CPU is responsible for 34% of the total power con-
sumption on average, for each test i ∈ {1, ..., n} and component j ∈ {1, ...,m}
we propose the formula:

EFi,j = 0.34× ECPUi,j
+ 0.01× EDRAMi,j

+ 0.01× Efansi,j+

0.02× Ediski,j
+ 0.62× EGPUi,j

(11)

Note this formula can be rewritten to account for any other combination of
hardware parts (e.g., include a screen of a smartphone).

Now we can calculate the global value for each component:

globalc(j) = [gc(1, j) gc(2, j) . . . gc(n, j)]
T (12)

where
gc(i, j) = EFi,j ×Ni,j × Ti,j (13)

This global value takes into consideration not only the energy consumption of
a component, but the cardinality and execution time all as one value. This allows
us to have a better understanding of what are the most important components
to look at and try to optimize. For example, a component A may consume twice
the amount of energy of component B, but component B is used five times as
often which might make it a good candidate to prioritize the attention on. This
would give a weight to component B as it would seem to be a core part of the
analyzed program.

Once we have the global values for each component, we can proceed to
calculate the global error vector as:

4http://www.buildcomputers.net/power-consumption-of-pc-components.html

9

globale = [ge(1) ge(2) . . . ge(n)]
T (14)

where

ge(i) =

m∑
j=1

gc(i, j) (15)

Finally, we apply the similarity function α to each component j to obtain
the global similarity with the error vector, defined as ψ,

ψ(j) = α(globalc(j), globale) (16)

where

α(c, e) =

n∑
i=1

ci

n∑
i=1

ei

(17)

Once again, the higher the similarity value, and closer it is to 1, the more
responsible it is. We can rank the components by this global similarity and have
initial indicators of where in the program we should prioritize our attention on,
and which are the most important components to optimize.

2.4. An Example

To understand how the SPELL analysis works and see how it handles the
execution data, we present in the following a concrete example: a simple parking
management system, containing 4 functionalities (add a car, add a list of cars,
search for the oldest car, and sort cars by registration date). A code snippet
expressing this example is depicted in Listing 1.

Listing 1: Pseudo-code for the Parking example

public class Park {

List <Car > cars;

void addCar(Car c) { cars.add(c); }

public void addCars(Collection <Car > c) { cars.addAll(c); }

public Car oldestCar () {
Car r = null;
if (!cars.isEmpty ()) {

r = cars.get(0);
}
for (Car c : cars) {

if (c.getFirstRegistration () < r.getFirstRegistration ()) {
r = c;

}
}
return r;

}

public void sort() {
CarComparator c = new CarComparator ();
cars.sort(c);

}

}

10

Considering that we want to perform the analysis at the method level, our
software components will then be the methods. We consider four different meth-
ods/components: adding several cars at the same time, adding a single car,
finding the oldest car, sorting the list of cars by registration date, and finding
the oldest car after the list of cars is sorted. We can also consider five different
test suites, each roughly simulating different (yet representable) usage scenarios
for this program based on our methods/components.

We instrumented this program in order to collect, for each test, the energy
consumed by each method (using RAPL). It also allowed us to obtain the usage
frequency of each method, and its execution time. Therefore, after running the
test suite, we can use the information of this program’s execution and start the
analysis.

Table 2: SPELL matrix built for the example program
addCars sort addCar oldestCar e globale

t1

⎛
⎝
{2.57, 0.74}

16
264.0

⎞
⎠

⎛
⎝
4.43, 2.26

9
692.0

⎞
⎠

⎛
⎝
0.49, 0.07

808
47.0

⎞
⎠

⎛
⎝
4.13, 2.34

8
638.0

⎞
⎠

⎛
⎝
{11.64, 5.43}

1641.0
841.0

⎞
⎠ 26972.3683

t2

⎛
⎝
{1.48, 0.48}

8
150.0

⎞
⎠

⎛
⎝
3.86, 1.72

14
531.0

⎞
⎠

⎛
⎝
0.92, 0.13

1612
76.0

⎞
⎠

⎛
⎝
3.00, 1.62

10
414.0

⎞
⎠

⎛
⎝
{9.27, 3.97}

1171.0
1644.0

⎞
⎠ 53533.0614

t3

⎛
⎝
{1.46, 0.42}

10
152.0

⎞
⎠

⎛
⎝
6.02, 2.41

14
672.0

⎞
⎠

⎛
⎝
1.13, 0.18

1626
87.0

⎞
⎠

⎛
⎝
1.02, 0.40

2
110.0

⎞
⎠

⎛
⎝
{9.65, 3.43}

1021.0
1652.0

⎞
⎠ 75171.9579

t4

⎛
⎝
{1.22, 0.36}

8
133.0

⎞
⎠

⎛
⎝
0.56, 0.20

2
61.0

⎞
⎠

⎛
⎝
0.16, 0.02

160
13.0

⎞
⎠

⎛
⎝
1.14, 0.50

4
150.0

⎞
⎠

⎛
⎝
{3.10, 1.11}

357.0
174.0

⎞
⎠ 826.8864

t5

⎛
⎝
{2.49, 0.64}

18
259.0

⎞
⎠

⎛
⎝
8.16, 4.19

17
1346.0

⎞
⎠

⎛
⎝
0.66, 0.10

1418
82.0

⎞
⎠

⎛
⎝
3.33, 1.64

6
468.0

⎞
⎠

⎛
⎝
{14.66, 6.59}

2155.0
1459.0

⎞
⎠ 98098.2886

φ

⎛
⎝
{0.191, 0.129}

0.0104
0.151

⎞
⎠
⎛
⎝
{0.477, 0.527}

0.0097
0.5204

⎞
⎠
⎛
⎝
{0.070, 0.025}

0.9747
0.0481

⎞
⎠
⎛
⎝
{0.262, 0.318}

0.0052
0.2805

⎞
⎠

ψ 0.0375 0.4061 0.4970 0.0594

We can see the entire model of the SPELL analysis for our example defined
in Table 2, but let us construct it step by step. The input data can be seen
in the top left 5 ∗ 4 matrix shown in Table 2, where each component and each
test has a triple of three categories. This triple contains the CPU and DRAM
energy consumption value, the number of times that software component was
used, and the execution time:⎛

⎝ECPU , EDRAM

N
T

⎞
⎠

In this case, the only hardware components shown are the CPU and DRAM
for the sake of simplicity of presenting our technique, but it still straightfor-

11

wardly applies if energy consumption information of more hardware components
is available.

Similarity by Component’s Category. Having these inputs defined in
SPELL, we will first calculate the software component similarities. We begin
by building the error (e vector). To do so, for each test, we sum all the values
of each individual category of the component data. This is shown on the right
hand side of our example matrix under the e column. Next, we calculate each
of the component’s category similarity. For example, for the (CPU) energy
category of component c1 we will have the following:

α1(A(c1), e) =
2.57+1.48+1.46+1.22+2.49
11.64+9.27+9.65+3.1+14.66 = 0.191

This would be applied for the both DRAM energy category and the other
two categories, and for each of the other components, producing the results seen
in the similarity by component’s category row φ in Table 2.

Global Similarity. For the global similarity, we begin by calculating
the global values of each component, and afterwards our new total global value
vector. We obtain values globalc(1) and globale:

globalc(1) = [3722.1888 609.6 760.912 445.1776 3976.686]T

globale = [26972.3683 53533.0614 75171.9579 826.8864 98098.2886]T

Finally, we use the coefficient similarity ψ(1), to obtain the global similarity
value for component c1 of 0.0375. Applying this to each component, we obtain
the results under the global similarity ψ.

Analysis. Having all the needed information to analyze this program we
begin extracting useful information. Reading the global similarity values (ψ),
we can see which component has the highest probability of having an energy
leak with the order of addCar (with similarity of 0.4970), sort (with 0.4061),
oldestCar (with 0.0594), and finally addCars (with 0.0375). This indicates to
the developer that he should first consider looking into method addCar to try
to improve the energy consumption of this program.

An advantage of this technique, which highlights the complementary per-
spectives of the two types of similarities that we consider, is that it can tell,
besides having a global view of the component, indicators of why the compo-
nent is faulty. For example, addCar is given the highest global similarity value,
and sort the second highest. If we now look into their category similarity values
(φ), we can see that although the former has the lowest (CPU and DRAM)
energy similarity (0.070 and 0.025), it has the highest cardinality similarity by
far (0.9747); the latter, however, has the highest energy similarity (0.477 and
0.527), but the second lowest cardinality similarity (0.0097). Even though sort
has a higher impact in terms of energy consumption when compared to add-
Car, addCar is almost a core component of this example program, with a much
higher usage than sort which ends up contributing to high energy consumption
over the course of the program’s lifecycle.

12

If the developer is only interested in optimizing purely for energy efficiency,
sort would be the best place to start looking at. On the other hand, if the
developer cares equally about all three categories, addCars should be looked at
first according to our global similarity analysis.

We argue that when choosing the software component levels, the user must
decide if they prefer a much more precise analysis, trading off performance, or
the opposite.

Choosing the software component level to be analyzed will come at a trade-
off of precision vs. performance. If the user has an idea of where a problem
might be, they can focus their attention on a certain portion of the code. On the
other hand, we argue that if the user has no clear indication of where to start,
they should begin by package or class level components (based on program size),
and continue to “drill-down” into finer granularity levels very much like how a
profiler is to be traditionally used.

3. SPELL Toolkit

As previously stated, our technique is language independent, where the only
required input is a matrix representing the tests, components, and categories.
As a proof of concept we have implemented the SPELL technique in Java. To use
SPELL in detecting energy leaks in software applications, we also provide two
auxiliary (language dependent) tools which help automate the energy measure-
ments within a Java program (using Intel’s RAPL), and construct the SPELL
matrix based on the measured outputs.

As the SPELL technique itself is language independent, one may easily de-
velop front-end tools for other languages to measure the energy consumption
and/or generate the SPELL matrix to run the analysis. Our core tool, and its
two supporting tools are open source, and provided together within the SPELL
toolkit. The toolkit5 contains more information on how to run the tools, and
the representation of the input and output data of each. An overview of the
tools (solid blocks) within the SPELL toolkit is shown in Figure 1.

Instrumentation and Energy Measurements. The first auxiliary tool in
the tool-kit, Instrumentation, consists of an out-of-the-box energy monitoring
instrumentation tool which automatically instruments the source code of each
method in a class with calls to the API of a Java energy estimation framework
during the beginning and end of each method (including before any nested re-
turns). When the instrumented program is executed, an output with both the
execution trace and energy consumption is presented a file at the end of the
execution. An example of the generated output trace is shown in the Instru-
mentation documentation.

This tool uses Intel’s Runtime Average Power Limit (RAPL) [35], and the
Java based RAPL framework jRAPL [40]. This allows us to record precise

5GitHub: https://github.com/greensoftwarelab/SPELL

13

Figure 1: SPELL tool-kit contents overview

energy consumption measurements from several hardware components (CPU,
DRAM, GPU, PACKAGE), as RAPL is a very reliable tool (as shown in [31]
and [32]). In addition, the instrumentation itself is based on the JavaParser6

set of tools to parse and instrument the code.
Note that SPELL is not limited to only using RAPL to measure energy,

but is developed in a way that it may receive any energy measurement frame-
work or tool to be used allowing the analysis of other languages. It also
permits looking at other domains such as: Android applications when using
Trepn [41];Monsoon [42], embedded devices using the ODroid XU-3 7; and other
scientific works [27, 43, 44, 33, 34, 45, 46, 41, 47].

SPELL Matrix Construction. The second auxiliary tool, BuildSPELLMa-
trixFromOutput, uses the execution/measurement output log of our instrumented
program as the input to construct a SPELL matrix. This automatically looks at
the method calls, and aggregates the energy consumption, execution time, and

6JavaParser: http://javaparser.org/
7ODroid XU-3: https://www.hardkernel.com/ko/tag/odroid-xu3/

14

frequency of methods into our matrix representation of program components
and tests.

If the previous tool (Instrumentation) were to be swapped out for another
technology or measurement system, this tool would still create the correct
SPELL matrix as long as its’ input follows the same defined language. Nonethe-
less, this too can be switched for another SPELL matrix construction tool. An
example of the generated output trace is shown in the BuildSPELLMatrixFro-
mOutput documentation.

SPELL Analysis. The core tool within the tool-kit, SpectrumbasedEnergyLeak-
Localization, is a Java implementation of the SPELL technique formally (and
fully) defined in Section 2. This tool parses a SPELL matrix (for example the
output of the BuildSPELLMatrixFromOutput tool), and calculates the Oracle,
Similarity, and Global Similarity for all of the program’s components given to
be analyzed.

As SPELL is language independent, it does matter what programming lan-
guage was analyzed nor with what measurement technique or tool. Any of the
two auxiliary tools can be swapped by other similar tools if the user prefers a
different approach, system, or domain.

4. Empirical Evaluation

One of our goals is to help provide programmers ways to become more
energy-aware. Additionally, our SPELL technique is to be used by develop-
ers to help them detect energy leaks (or energy inefficiencies) on a source code
level. Thus, we designed an empirical study to understand and answer the
following research questions:

RQ 1 Can the energy leaks identified by SPELL help developers improve the
overall energy efficiency of their programs?

Answering this question allows us to understand if in fact SPELL can
detect areas in the source code where there is a probability of an energy
hotspot occurring. If SPELL were to consistently point to areas in the
code, where in turn the developer would go ahead and alter, and the
energy efficiency improves, we can assume it is indeed identifying energy
leaks. If it were to indicate areas where by the developer’s changes actually
brought about a deterioration in the energy consumption, then SPELL is
not able to identify energy leaks.

RQ 2 Are the programs improved by developers assisted by SPELL significantly
more energy efficient than the programs improved by developers without
tool-assistance?

If a developer using SPELL is not significantly producing more energy
efficient programs, then it would mean there is no need to use such a tool
as a developer’s own knowledge is enough for such a task.

15

RQ 3 Are the programs improved by developers assisted by SPELL significantly
more energy efficient than the programs improved by developers with an
off the shelf profiler?

This question is very important, as one might assume that SPELL is
nothing more than another profiler, or that using an off the shelf profiler
is enough to improve the energy efficiency of a program. Additionally,
answering this question will allow us to understand if looking at a pro-
gram’s execution performance, and optimizing based off that information
is enough to optimize for energy.

The following sections will describe in detail the design, execution, results
and discussion of our empirical study.

4.1. Experimental Setup

Subjects. Participants in this study were selected from a candidate group that
replied to an invitation that we publicized among our departments and two
software houses. The selection process consisted of a self assessment step, in
which to be eligible, candidates had to consider themselves experienced Java
programmers. Ultimately, 15 programmers were selected: 12 male and 3 female;
all with computer science background and/or professional experience: 6 postdoc
researchers, 6 PhD students, and 3 professional programmers.

Design. For this study, we asked programmers to try to optimize the energy
consumption of a program in three different scenarios: a control group, with
our SPELL technique, and with a profiler.

The participants were then arranged into groups of threes (one for each
scenario) according to their professional status. Essentially, the outcome was
5 different groups of 3: 2 groups of postdoc, 2 groups of PhD students, and 1
group of professional programmers.

Objects. In order to support the study, we initially considered 63 Java projects
from an object-oriented course for computer science students, where students
were asked to build a journalism support platform, where users (Collaborators,
Journalists, Readers, and Editors) can write chronicles and reports, give likes
and comments, and perform other tasks.

We filtered these projects to obtain the ones which passed a set of system
tests designed by the course instructors, and all 16 unique operations and func-
tional requirements were implemented (posting chronicles/reports, registering
users, writing comments, viewing top commented, etc.). By doing so, we ended
up with 42 comparable and differently implemented projects8.

Due to allowing certain operations such as Listing Comments, and to pro-
vide an initial “warm-up”, for each of the 42 projects we populated the system

8http://www.di.uminho.pt/~jas/Research/spellStudies.rar

16

with an initial set-up with: 3000 Chronicles, 3000 Reports, 7655 Likes, 8586
Comments, 60 Collaborators, 60 Journalists, 406 Readers, and 15 Editors.

To execute the projects, we defined 7 test scenarios (i.e., 7 scenarios repli-
cating real program usage), simulating 7 days of interaction with the platform.
Each test scenario was made up of a random number (varying between the hun-
dreds and the thousands) of the 16 unique operations. While each test scenario
contained each of the 16 unique operations, the randomness allowed certain days
to have more of a certain type of operation than others. For example Tests 5
and 6 contain more write operations, while the others contain more read and
lookup operations.

For selecting which projects would actually be explored in our study, we have
resorted to SPELL itself. Indeed, we have used the test scenarios described
previously to calculate the global similarity value for each of the 42 software
projects (each component was defined as one project, so 42 components were
analyzed in total). Project 1 (P1) obtained a global similarities of 0.4259, P47 of
0.4093, P49 of 0.1439, P6 of 0.0042, P59 of 0.0042, P36 of 0.0029, P17 of 0.0015,
etc.

The reason for using SPELL here is that a higher global similarity represents
a more probable scenario where an energy leak may be occurring as it is more
responsible for the overall consumption, and means developers should focus their
attention on that specific component as it is the most energy problematic one.

This gives us a ranking of the most problematic projects according to SPELL.
However, still we do not know where to look at to try to optimize. Thus,
applying SPELL to each program but considering components as methods would
allow us to obtain a ranking of methods that are the most/least responsible for
energy consumption. So, we ran the SPELL analysis on the 5 worst ranking
projects, so that 1 project is considered by each of our participant groups, to
localize where energy leaks are present on a method level.

The global similarity for each of the projects’ methods where ψ > 0.07 or to
show at least 2 methods per project is shown in Table 3. The first column indi-
cates the project, while the second column states the problematic Class.method
according to SPELL, and the third column states the global similarity value.
The higher it is, the more responsible it is for the global inefficiency, and where
a problem is most probable to be found.

As a profiling tool, we turned to the NetBeans (8.2) Profiler9, a Java profiler
integrated into the NetBeans IDE. By using the profiling methods mode, and
more specifically the Hot spots tool10, we were able to see what methods the
tool was uncovering as performance bottlenecks. Presented in Table 3 are the
methods pointed by the profiler, under the Method (Profiler) column, and under
the % column is the percentage of time (CPU) of the method as stated by the
Hot spots tools. Just as with SPELL, the higher the value, the more problematic
the method is.

9https://profiler.netbeans.org/
10https://profiler.netbeans.org/docs/help/5.5/snap_cpu.html

17

Table 3: SPELL and Profiler ranking of methods from Projects P1, P47, P49, P6, and P59.
The first column represents the project number, the second and third the top methods and ψ
reported by SPELL (as hotspots), and the last two represent the top worst methods and %
reported by the profiler.

Proj. Method (SPELL) ψ Method (Profiler) %

P1
voteInReport 0.97 voteInReport 95.3
getUserLoggedInType 0.02 listArticlesByTheme 2.7

P47

listAllChronicles 0.57 addComment 51.1
listAllReports 0.15 listAllChronicles 15.8
chronicleExist 0.12 chronicleExist 7.8

P49

Like 0.27 ListTheme 29.3
ListComments 0.19 ListTopic 27.5
AddComment 0.10 ListComments 6.5
ListTopic 0.08 Like 5.5

P6

printNoticiaTopicoTema 0.40 listChronicles 32.8
printCronicaTopicoTema 0.20 listReports 24.9
isLogged 0.15 topChronicles 13.2

P59
getArticle 0.94 getArticle 81.9
vote 0.4 getComments 12.4

To further characterize the projects that we used, we show in Table 4 con-
crete metrics about them. Each line represents the metrics for a single project,
with the last 3 being the minimum, average, and maximum values. Columns 2–4
are the number of classes, methods, and lines of code (LOC), respectively. Col-
umn 5 represents the max cyclomatic complexity present in that project from a
single method. Finally, column 6 represents the average cyclomatic complexity
for that class, excluding methods with a complexity of 0 or 1.

Table 4: Software Metrics for Projects P1, P47, P49, P6, and P59

Classes Methods LOC Max Comp. Avg Comp.

P1 38 181 1037 26 5.05
P47 32 155 923 25 2.38
P49 27 131 811 17 3.37
P6 15 122 691 37 5.04
P59 32 151 905 11 3.45
Min 15 122 691 11 2.38
Avg 28.8 148 873.4 23.2 3.86
Max 38 181 1037 37 5.05

Measurements. In order to analyze the energy consumption of all projects, we
have instrumented their code using the SPELL toolkit. The instrumentation
code is realized with calls to RAPL, which allows us to measure and monitor
the energy that is being consumed.

Our measurements were made on a desktop with the following specifica-
tions: Linux 3.13.0-53-generic operating system, with 8GB of RAM, and a

18

Sandy Bridge Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz. In the architec-
ture of our machine, RAPL is only able to provide information regarding the
energy consumption of the CPU. Each test was executed 30 times [48], and we
extracted the cardinality and average values for both the time and CPU en-
ergy consumption (of the specific test and not the initial population as to only
analyze the tests).

4.2. Execution

We asked our 5 groups of participants to analyze one of the 5 projects and,
to the best of their knowledge, optimize its energy performance. Each group
was randomly assigned one of the 5 projects. They were also given the project’s
description and input examples to familiarize themselves with the software re-
quirements and structure, and allowed them to navigate the program looking
at whatever they felt they needed to understand. We asked them to dedicate
approximately 30 minutes to first understand the project. Each participant was
given a series of test cases and their expected outputs. This allowed them to
verify if they changed the business logic when refactoring and optimizing the
project.

Finally, we randomly chose one of the participants in each group to have
access to information produced by our SPELL technique for the given project,
and one to have access to information produced by the NetBeans profiler. Both
were asked to closely follow the recommendations of the tools. Thus, for each
group/project, one participant used SPELL, one used a profiler, and one used
no tool (control-group). The only imposed restriction was to try to dedicate no
more than 2 hours to optimize the project.

We instructed them to take note of the time they began and, when they
were satisfied with their work and felt they did indeed made an impact to the
performance, to take note of the end time. They were also asked to describe
what changes they made (or, if due to time restrictions, what changes they
would make), and if they (non control-group participants) found it beneficial
to have the data produced by the tools when optimizing for energy, or if they
(control-group participants) would have found it impactful.

Afterwards, we collected all the refactored programs (3 different variations
for each), made sure everything produced the expected output, and measured
the energy consumption and execution time from these refactorings.

4.3. Results

Table 5 present the results for Projects P1, P47, P49 P6, and P59, respectively.
Each row under Test represents the data for one of the 7 tests scenarios, with
the final row being the totals and global values. The first block of 2 columns
represents the data for the original project, showing Joules (J) and execution
time in milliseconds (ms). The second, third, and fourth block (with 4 columns
each) represent the measured energy, execution time, and energy gain percentage
(relative to the original project) for the control group, SPELL group, and profiler
group, respectively. The time taken to optimize is shown in parentheses above

19

each block next to the group name. A graphical representation of the global
percentage of gains for each project can be seen in Figure 2, where the blue
dotted bars represents the energy improvement (Joules) and the orange bars
represent the execution time improvement (ms).

Figure 2: Global percentage of gains for all projects

4.4. Discussion

To validate improvements and changes in energy consumption, we tested the
following hypothesis:

H 0 : P (A > B) = 0.5

H 1 : P (A > B) �= 0.5

where P (A > B) represents, when we randomly draw from both A and B, that
the probability of a draw from A is larger than the one from B is 50% in the
case of our null hypothesis, and different than 50% in our alternative hypothesis.
To understand if there is an overall significant relevance between the (A,B)
distributions, and not only per test scenario or per project, the data from all
30 measured samples, 7 tests, and 5 projects were grouped per distribution
(Original, Control, SPELL, and Profiler). The distributions were defined in
the following (A, B) pairs: (Original, Control), (Original, SPELL), (Original,
Profiler), (Control, SPELL), and (Profiler, SPELL). We consider the samples
as independent, non-normal distributed, and ran the Wilcoxon signed-rank test
with a two-tail P value with α=0.01. The improvements were indeed very
significant, producing significant relevance in all 5 cases, with p-values < 0.0001.

To calculate a nonparametric effect size, Field [49] suggests using Rosen-
thal’s formula [50, 51] to compute a correlation, and compare the correlation
values against Cohen’s [52] suggested thresholds of 0.1, 0.3, and 0.5 for small,
medium, and large magnitudes respectively. Thus we obtained the values of:
0.4 (medium), 0.6 (large), 0.3 (medium), 0.6 (large), and 0.5 (large) for the
respective 5 (A,B) pairs. Thus, we can see that SPELL outperforms the profiler
when compared to both the original versions, where SPELL achieved a large

20

Table 5: Study results from all projects

P1

Original Control - (2h05) SPELL - (1h13) Profiler - (1h33)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 93.1 8621 17.8 1289 80.9 85 13.9 913 85.0 89 13.8 888 85.2 90
2 20.3 1645 11.3 1796 44.2 -9 8.8 537 56.4 67 9.3 567 54.0 66
3 87.4 7982 15.7 1146 82.0 86 13.8 869 84.2 89 13.8 869 84.2 89
4 32.0 2666 15.0 1005 53.0 62 13.4 859 58.0 68 14.0 905 56.2 66
5 58.5 5322 14.9 985 74.5 81 11.8 784 79.8 85 11.9 785 79.6 85
6 17.9 1343 15.0 753 16.1 44 11.7 725 34.6 46 12.1 753 32.2 44
7 14.0 928 13.6 850 2.9 8 11.9 725 14.8 22 12.6 780 10.1 16

Total 323.1 28507 103.3 7824 68.0 73 85.5 5413 73.5 81 87.6 5547 72.9 81

P47

Original Control - (2h02) SPELL - (1h16) Profiler - (0h44)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 51.4 4487 19.3 1216 62.3 73 13.3 1160 74.1 74 21.5 1417 58.2 68
2 18.2 1235 10.3 641 43.2 48 7.6 798 58.4 35 10.1 643 44.2 48
3 36.7 2972 14.4 899 60.8 70 11.1 1018 69.8 65 16.1 1022 56.2 66
4 44.3 3683 18.1 1197 59.2 68 11.2 1024 74.7 72 19.1 1268 56.8 66
5 39.3 3323 18.3 1266 53.5 62 14.1 1267 64.1 61 18.8 1270 52.3 62
6 26.9 2024 15.6 991 42.1 51 13.0 1166 51.7 42 16.0 1008 40.4 50
7 30.0 2311 13.3 836 55.5 64 8.9 882 70.3 61 13.9 881 53.5 62

Total 246.7 20034 109.3 7045 55.7 65 79.1 7316 67.9 63 115.5 7510 53.2 63

P49

Original Control - (1h49) SPELL - (0h47) Profiler - (0h36)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 40.2 2508 39.8 2458 1.1 2 23.4 2085 41.9 17 33.5 2056 16.8 18
2 19.9 1392 17.1 1210 14.2 13 9.0 972 54.8 30 15.9 943 20.0 32
3 34.1 2094 33.4 2042 2.1 2 15.8 1539 53.7 27 29.8 1728 12.6 17
4 36.0 2202 36.0 2200 0.1 0 17.0 1701 52.7 23 31.7 1865 12.0 15
5 24.5 1572 22.0 1380 10.1 12 20.2 1280 17.5 19 22.9 1341 6.4 15
6 19.9 1240 19.1 1182 4.0 5 17.1 1092 13.9 12 19.1 1063 3.9 14
7 29.3 1813 26.8 1644 8.5 9 18.8 1289 36.0 29 26.8 1501 8.7 17

Total 203.9 12821 194.1 12115 4.8 6 121.3 9958 40.5 22 179.7 10497 11.9 18

P6

Original Control - (2h13) SPELL - (1h22) Profiler - (2h00)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 18.5 1351 19.0 1460 -2.6 -8 12.9 966 30.2 28 79.7 7781 -330.9 -476
2 9.4 600 10.3 668 -9.8 -11 7.8 487 17.0 19 13.9 1072 -47.9 -79
3 13.0 878 14.2 969 -9.8 -10 9.8 663 24.2 24 33.7 3010 -160.6 -243
4 21.2 1519 21.7 1571 -2.1 -3 17.1 1215 19.5 20 72.4 6953 -240.9 -358
5 13.1 939 14.8 1061 -13.0 -13 10.7 732 18.2 22 18.1 1453 -37.8 -55
6 12.0 804 13.2 902 -10.3 -12 10.3 673 14.3 16 14.0 1010 -16.3 -26
7 18.7 1254 19.1 1306 -2.2 -4 14.3 986 23.6 21 69.4 6759 -270.5 -439

Total 106.0 7345 112.4 7937 -6.1 -8 83.0 5723 21.7 22 301.2 28038 -184.2 -282

P59

Original Control - (1h58) SPELL - (1h04) Profiler - (1h21)
Gain (%) Gain (%) Gain (%)

Test J ms J ms J ms J ms J ms J ms J ms
1 13.2 989 13.3 992 -0.6 0 11.0 803 16.5 19 11.3 797 14.9 19
2 8.0 453 7.1 436 11.5 4 5.5 391 31.1 14 6.6 395 18.0 13
3 10.2 722 10.4 730 -1.8 -1 8.5 643 16.6 11 9.4 630 8.3 13
4 10.5 763 10.4 758 1.1 1 9.8 679 6.8 11 9.5 648 10.0 15
5 11.5 840 11.5 846 -0.5 -1 9.8 681 14.9 19 10.0 687 12.5 18
6 10.0 633 9.3 611 7.0 3 8.6 548 14.1 13 8.4 539 16.5 15
7 7.8 529 8.0 535 -2.5 -1 7.3 472 7.0 11 7.3 472 7.0 11

Total 71.3 4929 70.1 4908 1.7 0 60.5 4215 15.1 14 62.4 4168 12.5 15

effect size and the profiler a medium effects size, and to each other with also a
large effect size.

Returning to our research questions, we have shown that there is both sig-
nificant relevance and a large effect size when using our SPELL technique to
improve the energy efficiency of programs, with an average energy gain of 44%
(RQ1). While both the control-group (no tool assistance) and the profiler group
did also produce significant relevance with their energy optimizations when com-
pared to the original versions, SPELL outperformed both. Whereas the control
group achieved a medium effect size, SPELL achieved a large effect size and
when comparing SPELL to the control group, the former once again achieved a

21

large effect size (RQ2). Finally, the same applies to the profiler group where it
achieved a medium effect size when comparing the optimizations to the original
version (versus the large effect size of SPELL), and again SPELL achieved a
large effect size when comparing to the profiler group (RQ3).

Additionally, we conducted a study to understand what the control group
developers did to their projects, why did they end up producing gains, and why
were those gains always lower when compared to the SPELL group. The goal
was to understand if there were potential energy issues that SPELL was not
able to detect. We observed that for Project P1 the developer in the control
group focused on modifying 3 methods, 2 of which ranked last by SPELL, while
the other was ranked first. For Projects P47 and P49, developers in the control
group changed several methods, which according to SPELL were not the most
problematic. For example, in P47, the users modified the 3rd, 4th, 8th, 9th, and
23rd most problematic methods according to SPELL, and in P49, they modified
the 5th, 7th, 10th, 17th, 22nd, and 25th most problematic ones. Thus, while
these control group users were able to indeed optimize the program as they
tackled methods which had issues (and were also identified by SPELL), they
tackled methods which were not the most critical as the higher SPELL ranked
methods. Finally, the control group developer for Project P6 chose to modify
the main method, by replacing the mechanisms used to process input by a new
class he created, and the one for P59 actually only replaced global imports (e.g.
java.util.*) by specific ones (e.g. java.util.HashMap) These last two ones
explained why they became worse.

Observations From this study, we can see several interesting observations.
In the case of Project P1 and P59, the rankings from both using SPELL and
the profiler pointed to the same principal method (as shown in Table 3). Both
were given a very high responsibility percentage (by SPELL) and high CPU
time (by the profiler). This meant that if this method was optimized, a great
impact in the performance would occur as this was, without a doubt, a very
problematic method due to a bottleneck. Consequently for these two projects,
the participants achieved very similar energy optimizations as one would expect.
The slight difference can be attributed to what methods SPELL and the profiler
pointed to afterwards, with the SPELL recommendations producing slightly
better results.

We can also see how programmers with access to the SPELL recomenda-
tions were more efficient spending between 38%–57% less time, compared to the
control-group, to detect and correct the problem, while also producing more
efficient programs in both cases of energy and execution time. While those with
the profile recomendations did also spend less time, they did not achieve results
as good as those with the SPELL recommendation as we have seen. The par-
ticipants also felt that having the ranking of responsibility percentage was very
useful in identifying the energy leaks in the code, while the participants without
this information expressed how they did not know where to start looking, or if
certain parts were in fact problematic. All this is actually what we expected
(for both SPELL and the profiler) as there is a substantial impact on having
tools for energy-aware programming, as also suggested by [1, 2].

22

Moreover, when comparing the obtained gains from the control group with
the ones from the SPELL group, we can conclude that theres is not much left out
by SPELL in terms of energy leaks or energy inefficient methods. Considering
the changes made to the code by control group developers, we observed that
when they modified methods with highest ranking assigned by SPELL, than
the obtained gains of close to the ones in the SPELL group. This happened
in Project P1, where both the control and SPELL groups changed the method
ranked #1 by SPELL, and respectively obtaining gains of 68% and 73.5%.

We also observed that the gains obtained by the control group are somewhat
proportional to the SPELL ranking of the modified methods, as demonstrated
by the results for projects P47 and P49. Additionally, as demonstrated by the
results of P6 and P59, when the changes do not reflect the SPELL output, than
energy consumption either stays roughly the same (as in Project P59), or even
increases (as in Project P6).

Another interesting case is in Project P6, where the results indicate a clear
efficiency loss (both time and energy) for the case study using the profiler in-
formation. By comparing the original and transformed versions of the code,
we discovered that the programmer responsible for this study decided to opti-
mize the code by improving the efficiency of all listings and lookups on data
structures, hence worsening insertions. The fact is that the feature tests that
we provided contained more insertions than listings or lookups, leading to a
decrease in the refactored version’s performance. To understand if this outlier
skewed our previous statistical analysis, we re-ran the analysis without consid-
ering Project P6. The results maintained the same, with the only difference
being the profiler obtained a slightly larger effect size when compared to the
original projects. Thus, this does not change the conclusions of the study.

As the study only focused on giving participants one “round” or iteration
of both the SPELL and profiler analysis, the participants using SPELL and the
profiler tended to be “satisfied” with their optimizations much quicker, with
time to spare in their maximum 2 hours scenario. In a real-world scenario, they
would then run through another analysis, looking for new (if any) energy leaks
and continue to further optimize if possible.

Finally, none of the participants had any knowledge of what techniques or
optimizations could be done to specifically reduce energy consumption before
going into the study. Nevertheless, with the knowledge on basic performance
issues, algorithms, program complexity, and generally aiming for standard exe-
cution time optimization, they were able to achieve good results.

4.5. Looking back with DRAM

In this paper, we have so far provided evidence that SPELL helps developers
to identify the components of a software program that can be improved to gain
energy efficiency.

So far, however, and although we have argued that SPELL can receive inputs
from different hardware components, we have only shown its effectiveness when
using CPU measurements. This was due to the fact that, when we have initiated

23

this research direction, only energy measurements from the CPU were available
in the machines we targeted. Since then, we were able to use an upgraded server,
which allows us to access both CPU and DRAM measurements.

In the remainder of this section, we re-executed the initial stages of our study
to calculate the global similarity considering these two hardware components.
Our purpose for doing so is twofold. For once, we seek to understand what
impact the DRAM energy consumption would have had on our study. On the
other hand, we also aim to validate the consistency of SPELL across different
systems.

The steps, and methodology we followed here are identical as before. The
measurements were made on a new system with the following specifications:
Linux Ubuntu Server 16.10 operating system, kernel version 4.8.0-22-generic,
with 16GB of RAM, a Haswell Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz.

Table 6: SPELL with and without DRAM ranking of methods from Projects P1, P47, P49,
P6, and P59

Proj. Method (SPELL) ψ ψ Method (SPELL w/ DRAM)

P1
voteInReport 0.97 0.99 voteInReport
getUserLoggedInType 0.02 0.00 getUserLoggedInType

P47

listAllChronicles 0.57 0.52 listAllChronicles
listAllReports 0.15 0.16 listAllReports
chronicleExist 0.12 0.1130 Like
Like 0.078 0.1125 chronicleExist

P49

Like 0.27 0.35 Like
ListComments 0.19 0.13 ListComments
AddComment 0.10 0.09 AddComment
ListTopic 0.08 0.07 ListTopic

P6

printNoticiaTopicoTema 0.40 0.40 printNoticiaTopicoTema
printCronicaTopicoTema 0.20 0.22 printCronicaTopicoTema
isLogged 0.15 0.17 isLogged

P59
getArticle 0.94 0.93 getArticle
vote 0.04 0.05 vote

The global similarity results are shown in Table 6. The left-hand side are the
results from the original analysis (also shown in Table 3), and the right-hand side
are the results from the SPELL analysis including DRAM energy consumption.
In almost all cases, the rankings between both analyses maintained the same,
with slight differences in the global similarity (ψ) value. The single exception
can be observed in Project P47. Here, the Like method came in fourth with a
ψ value of 0.078, while it came in third with a ψ value of 0.1130 just slightly
surpassing the chronicleExist method when DRAM energy consumption was
also analyzed.

The initial hypothesis was that the results from the first analysis would
not suffer any major changes in this case, as DRAM does not tend to have a
high impact in overall energy consumption, as shown in other research [30, 53].

24

Even so, this post-analysis shows how having more available information on the
energy consumption of different hardware components (for example, DRAM)
can bring about a deeper analysis, and such as in the case of Project P47, can
reveal more information on the problematic spots within one’s application. The
more components considered, the more accurate of an analysis can be performed
by SPELL.

4.6. Threats to Validity

We present now some threats to validity of our study, divided in four cate-
gories as defined in [54].

Conclusion Validity From our experiment it is clear that we can effec-
tively find energy hot spots in source code, both on a project level, and on a
method level. Moreover, through the empirical study we have shown that these
results are useful for programmers. Nevertheless, by energy consumption we
only considered energy consumption that can be related to CPU usage due to
our machine limitations. While we have shown that energy and performance
are sometimes related in non-predictable ways, the impacts of other hardware
components on energy consumption deserve further elaboration. Thus, we in-
tend to explore this in the future by running a similar study on a machine with
a more recent architecture.

Internal Validity In this case we are concerned with other factors that may
interfere with our experiment results. The energy consumption measurements
we have for the different projects could have other factors than not just the
source code itself. To avoid this we ran all the tests in the same way. For every
test we added a “warm-up”, and we ran every test 30 times, taking the average
values for these runs so we could minimize particular states of the machine
used and its other software. Also, the results from participants may have been
influenced by other factors other than the SPELL and profiler recommendations
we gave them. However, the results achieved through the five projects are quite
consistent.

Construct Validity The purpose of our study was to evaluate our SPELL
technique alongside programmers, to both properly understand the benefits of
our technique with programmers, and to validate the efficiency of our technique
in detecting energy leaks. Thus, we constructed an empirical study based off the
suggestions of Ko et al. [55]. For example, for the task duration, they suggest
that the tasks should not be so easy as to have almost every participant complete
them before the time expires (leading to ceiling effects [56]), nor making it so
difficult that no one can complete them in the allotted time no matter which
tool is used (leading to floor effects [56]). Both of these cases would make it
difficult to statistically discriminate and show the differences between tools.

Due to this, and in addition to another suggestion that such studies should
not be more than 2 hours long [55], we decided to use the academic Java projects
we presented. This allowed us to have projects which were neither too difficult
nor too easy to both understand and optimize within our established time limit.
Using larger real-world applications would introduce a risk of participants not
completing or understanding (possible floor effects) due to the complexity and

25

possible lack of domain documentation. Nevertheless, there is no basis to suspect
that these projects are better or worse than any other kind we could have used.

External Validity In this case we are concerned about the generalization
of the results. The used source code has no particular characteristics that could
influence our findings. Its only particularity is that it is written in Java, and
maybe different results could be found for other PLs. However, our technique
is independent of the language and thus we do not anticipate that. Thus, we
believe that these results can be further generalized for other programs.

5. Related Work

While green computing exists for at least a decade, only recently has it
started to trend with the growing concern of the impact on our environment. In
average, close to 50% of the energy costs of an organization can be attributed to
the IT departments [57]. Researching and designing energy-aware programming
languages is an active area [58]. In fact, programmers many times seek help
in resolving energy inefficiencies, showing that there are many misconceptions
within the programming community as to what causes high-energy consumption,
how to solve them, and a heavy lack of support and knowledge for energy-aware
development [1, 2, 59, 60], greatly motivating this work. This awareness of
energy consumption is notorious within the software testing area, where some
works aim at reducing the overall consumption in the testing phase, by reducing
the number of tests while maintaining the code coverage [8, 61].

Studies have shown how different design patterns [62, 63], sorting algo-
rithms [64, 65], android API and advertisements [6, 7, 66, 67], software version
changes [10], code obfuscations [68], refactorings and transformations [9, 69, 70],
and different Java based collections [29, 71, 72, 73] have a statistically significant
impact on energy usage. Studies have also shown how different programming
languages have very different energy usages [24, 30, 74]. Other researchers have
used a model-based power consumption analysis in Android mobile applica-
tions [75, 76, 77, 78].

While we measured our programs using Intel’s RAPL framework, there are
other possible ways of measuring or estimating energy consumption [27, 43, 44,
33, 34, 45, 46, 41, 47]. As SPELL is not dependent on a specific measurement
technique, these measurement techniques can easily replace RAPL and, along-
side SPELL, reason about the energy measurements to present a target area of
where one should focus their attention to optimize.

It is common for software developers to use debugging tools and profilers
to help detect bugs or performance inefficient code fragments. Applying these
concepts to help detect energy inefficient code fragments is a much more chal-
lenging task. There is still very little knowledge as to what can be directly
done, from a software developers position, to manipulate and improve energy
consumption. Even if a developer takes the steps and effort to use one of the
many energy/power measuring devices, a lot has to be taken into account such
as the contextual information about what the program is supposed to be doing,

26

or where it was executed. Thus, this challenging problem has attracted several
researchers to propose solutions, but with a focus on mobile applications.

Ma et al. [76] presented a tool, eDoctor, for mobile users to troubleshoot
any irregular battery draining issues they were having on their smartphones.
The authors’ tool analyzes a mobile application’s behavior, and identify ab-
normalities. It then suggests the user the most appropriate repair solutions,
such as disabling device locations, downgrade to previous versions, turn on air-
plane mode, etc. A different approach was done by Oliner et al. [79], where a
black-box diagnostic is performed. The client application sends coarse-grained
measurements to a server where the data is correlated with client properties (for
example running applications). It then suggests actions the user may make on
the mobile phone to improve battery life.

Linares-Vásquez et al. [6] conducted a large empirical study on API calls
and usage patterns, within the Android development framework, to find which
have a tendency to have high consumption costs. Their study was conducted
on 55 different apps, looking into 807 different API methods and defined 131
as energy-greedy APIs. Similarly, Liu et al. [80] analyzed 402 different Android
applications and found that there were two main causes of energy problems:
missing deactivation of sensors or wake locks, and cost ineffective use of sensory
data. In response, they developed GreenDroid, a tool to identify these two
problems to further help developers find these issues.

Two similar and complementary works [67, 81], also within the Android
domain, defined energy efficient guidelines for mobile development. The former
was based on performance guidelines for mobile and focused on code smells
affecting CPU usage. The latter focus on resource usage, leakage, and sensors.

These prior works, while having the same objectives as our SPELL te-
chinique, are based on previously known energy guidelines. They focus on
finding the patterns, bugs, API, etc., and point to these areas. We believe
that the works which relates the most to our own are the following two.

Couto et al. [82] presented a technique where they relate the energy con-
sumption to the source code of the application while giving classifications of
methods as Red, Yellow, or Green. They do so by running each test case twice
on the program, where first they log the stack trace of each test, and then they
log the energy values for a test. By correlating the stack trace with the energy
values, and using thresholds, they classify the tests as Red, Yellow, or Green.
Finally, depending on what methods were called in those tests, also classify each
test as Red, Yellow, or Green. With our technique, as we use measured values
for each component, we can provide a more detailed and fine-grained analysis.
Our technique is also not limited in its scope, by this we mean we can easily
analyze code-line, method, class, package level etc., as our technique analyzes
the components which has no restriction on its definition, and is also language
independent.

Recently, Verdecchia et al. [83] presented a naive spectrum-based fault lo-
calization technique aimed to efficiently locate energy hotspots in source code.
Their work is very closely related to ours. The authors state that the difference
between their work and ours is while our contribution lies more in providing

27

the means to precisely locate energy hotspots in source code, their work aims to
investigate if more naive approaches can be used to locate them. Thus, under-
standing both sides, research can be further done on finding the best balance of
performance and precision.

6. Conclusion

This paper introduced SPELL — a spectrum-based energy leak localiza-
tion technique to identify inefficient energy consumption in the source code of
software systems. This technique uses a statistical method to associate different
percentage of responsibility for the energy consumed to the different source code
components of a software system, thus pinpointing the developer’s attention on
the most critical red spots in his code. Such software components may not only
be source code fragments, but also a set of equivalent software systems from
which we need to select the greenest one.

As future work, we plan on adapting, evolving, and testing our technique on
a mobile phones, as currently it is only for desktop and server based systems.

The paper also presented the implementation of this technique as a language
independent tool to locate energy leaks in a program’s source code. A front-
end for the Java language was constructed to monitor energy consumption at
runtime, which uses the developed SPELL tool to locate leaks in Java.

To evaluate both our technique and tool, we executed an empirical study
where we asked five groups of three developers to optimize the energy efficiency
of a software system. One developer had no tool assistance, while the other
two used our SPELL technique and a profiler, respectively. We showed that
developers using our technique were able to improve the energy efficiency of
their programs by 43% on average, while also showing statistical evidence that
the difference between a profiler and our technique is significant, in favor of the
former: the performance is between 2% and 72% better.

Thus, we have also shown that optimizing for energy efficiency is not directly
the same as optimizing for performance. We also showed that using our tech-
nique, the performed optimizations achieved on average a lower Powerup (im-
plying average power savings, with better performance and energy efficiency),
while optimizations following a profiler’s recommendations achieved better per-
formance at the cost of energy efficiency.

Acknowledgements

This work is funded by the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and International-
ization - COMPETE 2020 Programme within project POCI-01-0145-FEDER-
006961, and by National Funds through the Portuguese funding agency, FCT
- Fundação para a Ciência e a Tecnologia within project POCI010145FEDER-
016718, UID/EEA/50014/2013, and by FCT grant SFRH/BD/132485/2017.
This work is also supported by operation Centro010145FEDER000019 — C4 —

28

Centro de Competências em Cloud Computing, cofinanced by the European Re-
gional Development Fund (ERDF) through the Programa Operacional Regional
do Centro (Centro 2020), in the scope of the Sistema de Apoio à Investigação
Cient́ıfica e Tecnológica - Programas Integrados de IC&DT, and the first author
was financed by post-doc grant referência C4 SMDS L1-1 D.

References

[1] G. Pinto, F. Castor, Y. D. Liu, Mining questions about software energy
consumption, in: Proceedings of the 11th Working Conference on Mining
Software Repositories, ACM, 2014, pp. 22–31.

[2] C. Pang, A. Hindle, B. Adams, A. E. Hassan, What do programmers know
about software energy consumption?, IEEE Software 33 (3) (2016) 83–89.

[3] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, J. Visser, Seflab: A
lab for measuring software energy footprints, in: Green and Sustainable
Software (GREENS), 2013 2nd International Workshop on, IEEE, 2013,
pp. 30–37.

[4] G. Pinto, F. Castor, Y. D. Liu, Understanding energy behaviors of thread
management constructs, in: Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Ap-
plications, ACM, 2014, pp. 345–360.

[5] T. Yuki, S. Rajopadhye, Folklore confirmed: Compiling for speed= com-
piling for energy, in: Languages and Compilers for Parallel Computing,
Springer, 2014, pp. 169–184.

[6] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, D. Poshyvanyk, Mining energy-greedy api usage patterns
in android apps: an empirical study, in: Proceedings of the 11th Working
Conference on Mining Software Repositories, ACM, 2014, pp. 2–11.

[7] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, P. Ammann, Ecodroid:
An approach for energy-based ranking of android apps, in: Proceedings of
4th International Workshop on Green and Sustainable Software, GREENS
’15, IEEE Press, 2015, pp. 8–14.

[8] R. Jabbarvand, A. Sadeghi, H. Bagheri, S. Malek, Energy-aware test-suite
minimization for android apps, in: Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, 2016, pp. 425–
436.

[9] C. Sahin, L. Pollock, J. Clause, How do code refactorings affect energy
usage?, in: Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM ’14, ACM,
New York, NY, USA, 2014, pp. 36:1–36:10. doi:10.1145/2652524.2652538.
URL http://doi.acm.org/10.1145/2652524.2652538

29

[10] A. Hindle, Green mining: a methodology of relating software change and
configuration to power consumption, Empirical Software Engineering 20 (2)
(2015) 374–409.

[11] S. Li, S. Mishra, Optimizing power consumption in multicore smartphones,
Journal of Parallel and Distributed Computing 95 (2016) 124–137.

[12] L. G. Lima, G. Melfe, F. Soares-Neto, P. Lieuthier, J. P. Fernandes,
F. Castor, Haskell in Green Land: Analyzing the Energy Behavior of
a Purely Functional Language, in: Proceedings of the 23rd IEEE Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER’2016), IEEE, 2016, pp. 517–528.

[13] A. E. Trefethen, J. Thiyagalingam, Energy-aware software: Challenges,
opportunities and strategies, Journal of Computational Science 4 (6) (2013)
444 – 449.

[14] P. Lago, Challenges and opportunities for sustainable software, in: Pro-
ceedings of the Fifth International Workshop on Product LinE Approaches
in Software Engineering, PLEASE ’15, IEEE Press, 2015, pp. 1–2.

[15] A. Hindle, Green software engineering: the curse of methodology, PeerJ
PrePrints 3 (2015) e1832.

[16] G. Pinto, F. Castor, Energy efficiency: a new concern for application soft-
ware developers, Communications of the ACM 60 (12) (2017) 68–75.

[17] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, J. Clause, An empirical study of practitioners’ perspectives
on green software engineering, in: International Conference on Software
Engineering (ICSE), 2016 IEEE/ACM 38th, IEEE, 2016, pp. 237–248.

[18] R. Pereira, Energyware engineering: Techniques and tools for green soft-
ware development, Ph.D. thesis, Universidade do Minho (2018).

[19] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, J. Saraiva,
Helping programmers improve the energy efficiency of source code, in:
Proceedings of the 39th International Conference on Software Engineer-
ing Companion, ICSE-C ’17, IEEE Press, Piscataway, NJ, USA, 2017, pp.
238–240. doi:10.1109/ICSE-C.2017.80.

[20] R. Pereira, Locating energy hotspots in source code, in: Proceedings of the
39th International Conference on Software Engineering Companion, IEEE
Press, 2017, pp. 88–90.

[21] R. Abreu, P. Zoeteweij, A. J. C. v. Gemund, Spectrum-based multiple
fault localization, in: Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE ’09, IEEE Computer
Society, 2009, pp. 88–99.

30

[22] R. Abreu, P. Zoeteweij, A. J. Van Gemund, On the accuracy of spectrum-
based fault localization, in: Testing: Academic and Industrial Conference
Practice and Research Techniques-MUTATION (TAICPART-MUTATION
2007), IEEE, 2007, pp. 89–98.

[23] A. E. Trefethen, J. Thiyagalingam, Energy-aware software: Challenges,
opportunities and strategies, Journal of Computational Science 4 (6) (2013)
444–449.

[24] M. Couto, R. Pereira, F. Ribeiro, R. Rua, J. Saraiva, Towards a green
ranking for programming languages, in: Proceedings of the 21st Brazilian
Symposium on Programming Languages, SBLP 2017, ACM, New York,
NY, USA, 2017, pp. 7:1–7:8, best Paper. doi:10.1145/3125374.3125382.
URL http://doi.acm.org/10.1145/3125374.3125382

[25] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel, F. F. Rivera, D. S.
Nikolopoulos, Power and energy implications of the number of threads used
on the intel xeon phi, Annals of Multicore and GPU Programming 3 (1)
(2015) 55–65.

[26] M. Kambadur, M. A. Kim, An experimental survey of energy management
across the stack, in: ACM SIGPLAN Notices, Vol. 49, ACM, 2014, pp.
329–344.

[27] D. Li, S. Hao, W. G. Halfond, R. Govindan, Calculating source line level
energy information for android applications, in: Proceedings of the 2013
International Symposium on Software Testing and Analysis, ACM, 2013,
pp. 78–89.

[28] S. Abdulsalam, Z. Zong, Q. Gu, M. Qiu, Using the greenup, powerup, and
speedup metrics to evaluate software energy efficiency, in: Proceedings of
the 6th International Green and Sustainable Computing Conference, IEEE,
2015, pp. 1–8.

[29] R. Pereira, M. Couto, J. Saraiva, J. Cunha, J. P. Fernandes, The influ-
ence of the java collection framework on overall energy consumption, in:
Proceedings of the 5th International Workshop on Green and Sustainable
Software, GREENS ’16, ACM, 2016, pp. 15–21.

[30] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernan-
des, J. Saraiva, Energy efficiency across programming languages: How
do energy, time, and memory relate?, in: Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engi-
neering, SLE 2017, ACM, New York, NY, USA, 2017, pp. 256–267.
doi:10.1145/3136014.3136031.
URL http://doi.acm.org/10.1145/3136014.3136031

[31] M. Hähnel, B. Döbel, M. Völp, H. Härtig, Measuring energy consumption
for short code paths using RAPL, SIGMETRICS Performance Evaluation
Review 40 (3) (2012) 13–17.

31

[32] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, D. Rajwan,
Power-management architecture of the intel microarchitecture code-named
sandy bridge, IEEE Micro 32 (2) (2012) 20–27.

[33] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech,
M. V. Hermenegildo, K. Eder, Energy consumption analysis of programs
based on xmos isa-level models, in: Logic-Based Program Synthesis and
Transformation, Springer, 2013, pp. 72–90.

[34] A. Noureddine, R. Rouvoy, L. Seinturier, Monitoring energy hotspots in
software, Automated Software Engineering (2015) 1–42.

[35] M. Dimitrov, C. Strickland, S.-W. Kim, K. Kumar, K. Doshi,
Intel R© power governor, https://software.intel.com/en-us/articles/
intel-power-governor, accessed: 2017-10-12 (2015).

[36] L. S. Passos, R. Abreu, R. J. Rossetti, Spectrum-based fault localisation for
multi-agent systems, in: Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence (IJCAI’15), 2015, pp. 1134–1140.

[37] R. Real, J. M. Vargas, The probabilistic basis of jaccard’s index of similar-
ity, Systematic biology (1996) 380–385.

[38] P. E. Dombek, L. K. Johnson, S. T. Zimmerley, M. J. Sadowsky, Use of
repetitive dna sequences and the pcr to differentiate escherichia coli isolates
from human and animal sources, Applied and Environmental Microbiology
66 (6) (2000) 2572–2577.

[39] R. Rousseau, Jaccard similarity leads to the marczewski-steinhaus topol-
ogy for information retrieval, Information processing & management 34 (1)
(1998) 87–94.

[40] K. Liu, G. Pinto, Y. D. Liu, Data-oriented characterization of application-
level energy optimization, in: Fundamental Approaches to Software Engi-
neering, Springer, 2015, pp. 316–331.

[41] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, S. Tarkoma, Modeling,
profiling, and debugging the energy consumption of mobile devices, ACM
Comput. Surv. 48 (3) (2015) 39:1–39:40. doi:10.1145/2840723.
URL http://doi.acm.org/10.1145/2840723

[42] Monsoon, Monsoon solutions, inc., http://www.msoon.com/

LabEquipment/PowerMonitor/ (2018).

[43] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, K. Eder, Static
analysis of energy consumption for llvm ir programs, in: Proceedings of
the 18th International Workshop on Software and Compilers for Embedded
Systems, SCOPES ’15, ACM, 2015, pp. 12–21.

32

[44] N. Stulova, J. F. Morales, M. V. Hermenegildo, Reducing the overhead of
assertion run-time checks via static analysis., in: PPDP, 2016, pp. 90–103.

[45] S. Hao, D. Li, W. G. J. Halfond, R. Govindan, Estimating mobile appli-
cation energy consumption using program analysis, in: Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, IEEE
Press, 2013, pp. 92–101.

[46] A. Pathak, Y. C. Hu, M. Zhang, Where is the energy spent inside my app?:
fine grained energy accounting on smartphones with eprof, in: Proceedings
of the 7th ACM european conference on Computer Systems, ACM, 2012,
pp. 29–42.

[47] S. A. Chowdhury, A. Hindle, Greenoracle: estimating software energy con-
sumption with energy measurement corpora, in: Proceedings of the 13th In-
ternational Conference on Mining Software Repositories, MSR, 2016, 2016,
pp. 49–60.

[48] R. V. Hogg, E. A. Tanis, Probability and statistical inference, Vol. 993,
Macmillan New York, 1977.

[49] A. Field, Discovering statistics using SPSS, Sage publications, 2009.

[50] R. Rosenthal, Meta-analytic procedures for social research, Vol. 6, Sage,
1991.

[51] R. Rosenthal, H. Cooper, L. Hedges, Parametric measures of effect size,
The handbook of research synthesis (1994) 231–244.

[52] J. Cohen, Statistical power analysis for the behavioral sciences. 1988., Hills-
dale, NJ: Lawrence Earlbaum Associates 2.

[53] G. Melfe, A. Fonseca, J. P. Fernandes, Helping developers write energy effi-
cient haskell through a data-structure evaluation, in: 2018 IEEE/ACM 6th
International Workshop on Green And Sustainable Software (GREENS),
IEEE, 2018, pp. 9–15.

[54] T. D. Cook, D. T. Campbell, Quasi-experimentation: design & analysis
issues for field settings, Houghton Mifflin, 1979.

[55] A. J. Ko, T. D. Latoza, M. M. Burnett, A practical guide to controlled ex-
periments of software engineering tools with human participants, Empirical
Software Engineering 20 (1) (2015) 110–141.

[56] R. Rosenthal, R. Rosnow, Essentials of Behavioral Research: Methods and
Data Analysis, McGraw-Hill series in psychology, McGraw-Hill, 1984.
URL https://books.google.pt/books?id=AftGAAAAMAAJ

33

[57] R. R. Harmon, N. Auseklis, Sustainable it services: Assessing the impact of
green computing practices, in: Management of Engineering & Technology,
2009. PICMET 2009. Portland International Conference on, IEEE, 2009,
pp. 1707–1717.

[58] M. Cohen, H. S. Zhu, E. E. Senem, Y. D. Liu, Energy types, in: ACM
SIGPLAN Notices, Vol. 47, ACM, 2012, pp. 831–850.

[59] C. Zhang, A. Hindle, D. M. German, The impact of user choice on energy
consumption, IEEE software 31 (3) (2014) 69–75.

[60] C. Wilke, S. Richly, S. Gotz, C. Piechnick, U. Aßmann, Energy consump-
tion and efficiency in mobile applications: A user feedback study, in: Green
Computing and Communications (GreenCom), 2013 IEEE and Internet of
Things (iThings/CPSCom), IEEE International Conference on and IEEE
Cyber, Physical and Social Computing, IEEE, 2013, pp. 134–141.

[61] D. Li, Y. Jin, C. Sahin, J. Clause, W. G. Halfond, Integrated energy-
directed test suite optimization, in: Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ACM, 2014, pp. 339–350.

[62] C. Sahin, F. Cayci, I. L. M. Gutierrez, J. Clause, F. Kiamilev, L. Pollock,
K. Winbladh, Initial explorations on design pattern energy usage, in: 1st
International Workshop on Green and Sustainable Software (GREENS),
2012, IEEE, 2012, pp. 55–61.

[63] C. Bunse, S. Stiemer, On the energy consumption of design patterns,
Softwaretechnik-Trends 33 (2) (2013) 1–2.
URL http://pi.informatik.uni-siegen.de/stt/33_2/01\

_Fachgruppenberichte/sre/01-BunseStiemer.pdf

[64] C. Bunse, H. Höpfner, S. Roychoudhury, E. Mansour, Choosing the ”best”
sorting algorithm for optimal energy consumption, in: Proceedings of the
4th International Conference on Software and Data Technologies, 2009, pp.
199–206.

[65] C. Bunse, H. Höpfner, E. Mansour, S. Roychoudhury, Exploring the energy
consumption of data sorting algorithms in embedded and mobile environ-
ments, in: Mobile Data Management: Systems, Services and Middleware,
2009. MDM’09. Tenth International Conference on, IEEE, 2009, pp. 600–
607.

[66] K. Rasmussen, A. Wilson, A. Hindle, Green mining: energy consumption of
advertisement blocking methods, in: Proceedings of the 3rd International
Workshop on Green and Sustainable Software, ACM, 2014, pp. 38–45.

[67] L. Cruz, R. Abreu, Performance-based guidelines for energy efficient mo-
bile applications, in: Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems, MOBILESoft ’17, IEEE Press,

34

Piscataway, NJ, USA, 2017, pp. 46–57. doi:10.1109/MOBILESoft.2017.19.
URL https://doi.org/10.1109/MOBILESoft.2017.19

[68] C. Sahin, M. Wan, P. Tornquist, R. Mckenna, Z. Pearson, W. G. J.
Halfond, J. Clause, How does code obfuscation impact energy usage?,
Journal of Software: Evolution and Process 28 (7) (2016) 565–588.
doi:10.1002/smr.1762.
URL https://doi.org/10.1002/smr.1762

[69] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto, The impact of source
code transformations on software power and energy consumption, Journal
of Circuits, Systems, and Computers 11 (05) (2002) 477–502.

[70] J. J. Park, J.-E. Hong, S.-H. Lee, Investigation for software power con-
sumption of code refactoring techniques., in: SEKE, 2014, pp. 717–722.

[71] I. Manotas, L. Pollock, J. Clause, Seeds: A software engineer’s energy-
optimization decision support framework, in: Proceedings of the 36th In-
ternational Conference on Software Engineering, ACM, 2014, pp. 503–514.

[72] G. Pinto, K. Liu, F. Castor, Y. D. Liu, A comprehensive study on the en-
ergy efficiency of java’s thread-safe collections, in: 2016 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2016, Raleigh,
NC, USA, October 2-7, 2016, 2016, pp. 20–31. doi:10.1109/ICSME.2016.34.
URL https://doi.org/10.1109/ICSME.2016.34

[73] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, A. Hindle, Energy
profiles of java collections classes, in: Proceedings of the 38th International
Conference on Software Engineering, ACM, 2016, pp. 225–236.

[74] W. Oliveira, R. Oliveira, F. Castor, A study on the energy consumption of
android app development approaches, in: Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories, IEEE Press, 2017, pp.
42–52.

[75] S. Nakajima, Model-based power consumption analysis of smartphone ap-
plications., in: ACESMB@ MoDELS, 2013.

[76] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. K. Saul,
G. M. Voelker, edoctor: Automatically diagnosing abnormal battery drain
issues on smartphones., in: NSDI, Vol. 13, 2013, pp. 57–70.

[77] S. Nakajima, Everlasting challenges with the obj language family, in: Spec-
ification, Algebra, and Software, Springer, 2014, pp. 478–493.

[78] S. Nakajima, Model checking of energy consumption behavior, in: Complex
Systems Design & Management Asia, Springer, 2015, pp. 3–14.

35

[79] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, S. Tarkoma, Carat: Col-
laborative energy diagnosis for mobile devices, in: Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’13,
Roma, Italy, November 11-15, 2013, ACM, 2013, pp. 10:1–10:14.

[80] Y. Liu, C. Xu, S.-C. Cheung, J. Lü, Greendroid: Automated diagnosis
of energy inefficiency for smartphone applications, IEEE Transactions on
Software Engineering 40 (9) (2014) 911–940.

[81] A. Banerjee, A. Roychoudhury, Automated re-factoring of android apps to
enhance energy-efficiency, in: International Conference on Mobile Software
Engineering and Systems (MOBILESoft), 2016 IEEE/ACM, IEEE, 2016,
pp. 139–150.

[82] M. Couto, T. Carção, J. Cunha, J. P. Fernandes, J. Saraiva, Detecting
anomalous energy consumption in android applications, in: Proceedings of
the 18th Brazilian Symposium on Programming Languages, SBLP 2014,
Springer International Publishing, 2014, pp. 77–91.

[83] R. Verdecchia, A. Guldner, Y. Becker, E. Kern, Code-level energy hotspot
localization via naive spectrum based testing, in: H.-J. Bungartz, D. Kran-
zlmüller, V. Weinberg, J. Weismüller, V. Wohlgemuth (Eds.), Advances
and New Trends in Environmental Informatics, Springer International Pub-
lishing, Cham, 2018, pp. 111–130.

36

