11 research outputs found
Clarithromycin is an effective immunomodulator when administered late in experimental pyelonephritis by multidrug-resistant Pseudomonas aeruginosa
BACKGROUND: To apply clarithromycin as an immunomodulatory treatment in experimental urosepsis by multidrug-resistant Pseudomonas aeruginosa. METHODS: Acute pyelonephritis was induced in 40 rabbits after inoculation of the test isolate in the renal pelvis. Therapy was administered upon signs of sepsis in four groups: A, controls; B, intravenous clarithromycin; C, amikacin; and D, both agents. Survival and vital signs were recorded; blood was sampled for culture and estimation of pro-inflammatory mediators; monocytes were isolated for determination of apoptotic rate and ex vivo TNFα secretion. Quantitative cultures and biopsies of organs were performed after death. RESULTS: Increased rectal temperature and oxygen saturation were found in groups B and D compared to A and C. Mean survival of groups A, B, C and D was 2.65, 7.15, 4.25 and 8.70 days respectively. No differences were noted between groups concerning bacterial load in blood and tissues and serum endotoxins. Serum MDA and total caspase-3 activity of monocytes of group D decreased following treatment compared to other groups. Negative correlation was detected between cytoplasmic caspase-3 and ex vivo secretion of TNFα of blood monocytes of group A; similar correlation was not found for any other group. Pathology scores of liver and lung of group B were lower than group A. CONCLUSION: Clarithromycin administered late in experimental urosepsis by multidrug-resistant P. aeruginosa prolonged survival and ameliorated clinical findings. Its effect is probably attributed to immunomodulatory intervention on blood monocytes
Recommended from our members
Modelling the hydrodynamic response of a floating offshore wind turbine – a comparative study
This paper summarises the work conducted within the 1st FOWT (Floating Offshore Wind Turbine) Comparative Study organised by the EPSRC (UK) ‘Extreme loading on FOWTs under complex environmental conditions’ and ‘Collaborative computational project on wave structure interaction (CCP-WSI)’ projects. The hydrodynamic response of a FOWT support structure is simulated with a range of numerical models based on potential theory, Morison equation, Navier-Stokes solvers and hybrid methods coupling different flow solvers. A series of load cases including the static equilibrium tests, free decay tests, operational and extreme focused wave cases are considered for the UMaine VolturnUS-S semi-submersible platform, and the results from 17 contributions are analysed and compared with each other and against the experimental data from a 1:70 scale model test performed in the COAST Laboratory Ocean Basin at the University of Plymouth. It is shown that most numerical models can predict similar results for the heave response, but significant discrepancies exist in the prediction of the surge and pitch responses as well as the mooring line loads. For the extreme focused wave case, while both Navier–Stokes and potential flow base models tend to produce larger errors in terms of the root mean squared error than the operational focused wave case, the Navier-Stokes based models generally perform better. Given the fact that variations in the solutions (sometimes large) also present in the results based the same or similar numerical models, e.g., OpenFOAM, the study highlights uncertainties in setting up a numerical model for complex wave structure interaction simulations such as those involving a FOWT and therefore the importance of proper code validation and verification studies
A potential flow method combining immersed boundaries and overlapping grids: Formulation, validation and verification
Comparative study on breaking waves interaction with vertical wall retrofitted with recurved parapet in small and large scale
Aims:
To review the barriers and facilitators that cross-sector partners face in promoting physical activity.
Methods:
We searched Medline, Embase, PsychINFO, ProQuest Central, SCOPUS and SPORTDiscus to identify published records dating from 1986 to August 2021. We searched for public health interventions drawn from partnerships, where the partners worked across sectors and their shared goal was to promote or increase physical activity through partnership approaches. We used the Critical Appraisal Skills Programme UK (CASP) checklist and Risk Of Bias In Non-randomised Studies – of Interventions (ROBINS-I) tool to guide the critical appraisal of included records, and thematic analysis to summarise and synthesise the findings.
Results:
Findings (n = 32 articles) described public health interventions (n = 19) aiming to promote physical activity through cross-sector collaboration and/or partnerships. We identified barriers, facilitators and recommendations in relation to four broad themes: approaching and selecting partners, funding, building capacity and taking joint action.
Conclusion:
Common challenges that partners face are related to allocating time and resources, and sustaining momentum. Identifying similarities and differences between partners early on and building good relationships, strong momentum and trust can take considerable time. However, these factors may be essential for fruitful collaboration. Boundary spanners in the physical activity system could help translate differences and consolidate common ground between cross-sector partners, accelerating joint leadership and introducing systems thinking
Modelling the hydrodynamic response of a floating offshore wind turbine – a comparative study
This paper summarises the work conducted within the 1st FOWT (Floating Offshore Wind Turbine) Comparative Study organised by the EPSRC (UK) ‘Extreme loading on FOWTs under complex environmental conditions’ and ‘Collaborative computational project on wave structure interaction (CCP-WSI)’ projects. The hydrodynamic response of a FOWT support structure is simulated with a range of numerical models based on potential theory, Morison equation, Navier-Stokes solvers and hybrid methods coupling different flow solvers. A series of load cases including the static equilibrium tests, free decay tests, operational and extreme focused wave cases are considered for the UMaine VolturnUS-S semi-submersible platform, and the results from 17 contributions are analysed and compared with each other and against the experimental data from a 1:70 scale model test performed in the COAST Laboratory Ocean Basin at the University of Plymouth. It is shown that most numerical models can predict similar results for the heave response, but significant discrepancies exist in the prediction of the surge and pitch responses as well as the mooring line loads. For the extreme focused wave case, while both Navier–Stokes and potential flow base models tend to produce larger errors in terms of the root mean squared error than the operational focused wave case, the Navier-Stokes based models generally perform better. Given the fact that variations in the solutions (sometimes large) also present in the results based the same or similar numerical models, e.g., OpenFOAM, the study highlights uncertainties in setting up a numerical model for complex wave structure interaction simulations such as those involving a FOWT and therefore the importance of proper code validation and verification studies.<br/
Modelling the hydrodynamic response of a floating offshore wind turbine – a comparative study
This paper summarises the work conducted within the 1st FOWT (Floating Offshore Wind Turbine) Comparative Study organised by the EPSRC (UK) ‘Extreme loading on FOWTs under complex environmental conditions’ and ‘Collaborative computational project on wave structure interaction (CCP-WSI)’ projects. The hydrodynamic response of a FOWT support structure is simulated with a range of numerical models based on potential theory, Morison equation, Navier-Stokes solvers and hybrid methods coupling different flow solvers. A series of load cases including the static equilibrium tests, free decay tests, operational and extreme focused wave cases are considered for the UMaine VolturnUS-S semi-submersible platform, and the results from 17 contributions are analysed and compared with each other and against the experimental data from a 1:70 scale model test performed in the COAST Laboratory Ocean Basin at the University of Plymouth. It is shown that most numerical models can predict similar results for the heave response, but significant discrepancies exist in the prediction of the surge and pitch responses as well as the mooring line loads. For the extreme focused wave case, while both Navier–Stokes and potential flow base models tend to produce larger errors in terms of the root mean squared error than the operational focused wave case, the Navier-Stokes based models generally perform better. Given the fact that variations in the solutions (sometimes large) also present in the results based the same or similar numerical models, e.g., OpenFOAM, the study highlights uncertainties in setting up a numerical model for complex wave structure interaction simulations such as those involving a FOWT and therefore the importance of proper code validation and verification studies
