41 research outputs found

    Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers

    Get PDF
    Introduction: Basal-like breast cancers behave more aggressively despite the presence of a dense lymphoid infiltrate. We hypothesised that immune suppression in this subtype may be due to T regulatory cells (Treg) recruitment driven by hypoxia-induced up-regulation of CXCR4 in Treg.Methods: Immunoperoxidase staining for FOXP3 and CXCL12 was performed on tissue microarrays from 491 breast cancers. The hypoxia-associated marker carbonic anhydrase IX (CA9) and double FOXP3/CXCR4 staining were performed on sections from a subset of these cancers including 10 basal-like and 11 luminal cancers matched for tumour grade.Results: High Treg infiltration correlated with tumour CXCL12 positivity (OR 1.89, 95% CI 1.22 to 2.94, P = 0.004) and basal phenotype (OR 3.14, 95% CI 1.08 to 9.17, P = 0.004) in univariate and multivariate analyses. CXCL12 positivity correlated with improved survival (P = 0.005), whereas high Treg correlated with shorter survival for all breast cancers (P = 0.001), luminal cancers (P < 0.001) and basal-like cancers (P = 0.040) that were confirmed in a multivariate analysis (OR 1.61, 95% CI 1.02 to 2.53, P = 0.042). In patients treated with hormone therapy, high Treg were associated with a shorter survival in a multivariate analysis (OR 1.78, 95% CI 1.01 to 3.15, P = 0.040). There was a tendency for luminal cancers to show CXCL12 expression (102/138, 74%) compared to basal-like cancers (16/27, 59%), which verged on statistical significance (P = 0.050). Up-regulation of CXCR4 in Treg correlated with the basal-like phenotype (P = 0.029) and tumour hypoxia, as indicated by CA9 expression (P = 0.049).Conclusions: Our data show that in the setting of hypoxia and CXCR4 up-regulation in Treg, CXCL12 expression may have the negative consequence of enhancing Treg recruitment and suppressing the anti-tumour immune response. © 2011 Yan et al.; licensee BioMed Central Ltd

    Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis

    Get PDF
    Lactate dehydrogenase-5 (LDH-5) catalyses the reversible transformation of pyruvate to lactate, having a principal position in the anaerobic cellular metabolism. Induction of LDH-5 occurs during hypoxia and LDH-5 transcription is directly regulated by the hypoxia-inducible factor 1 (HIF1). Serum LDH levels have been correlated with poor prognosis and resistance to chemotherapy and radiotherapy in various neoplastic diseases. The expression, however, of LDH in tumours has never been investigated in the past. In the present study, we established an immunohistochemical method to evaluate the LDH-5 overexpression in tumours, using two novel antibodies raised against the rat muscle LDH-5 and the human LDH-5 (Abcam, UK). The subcellular patterns of expression in cancer cells were mixed nuclear and cytoplasmic. In direct contrast to cancer cells, stromal fibroblasts were reactive for LDH-5 only in a minority of cases. Serum LDH, although positively correlated with, does not reliably reflect the intratumoral LDH-5 status. Lactate dehydrogenase-5 overexpression was directly related to HIF1alpha and 2alpha, but not with the carbonic anhydrase 9 expression. Patients with tumours bearing high LDH-5 expression had a poor prognosis. Tumours with simultaneous LDH-5 and HIF1alpha (or HIF2alpha) overexpression, indicative of a functional HIF pathway, had a particularly aggressive behaviour. It is concluded that overexpression of LDH-5 is a common event in non-small-cell lung cancer, can be easily assessed in paraffin-embedded material and provides important prognostic information, particularly when combined with other endogenous markers of hypoxia and acidity

    Hypoxia upregulates expression of human endosialin gene via hypoxia-inducible factor 2

    Get PDF
    Endosialin is a transmembrane glycoprotein selectively expressed in blood vessels and stromal fibroblasts of various human tumours. It has been functionally implicated in angiogenesis, but the factors that control its expression have remained unclear. As insufficient delivery of oxygen is a driving force of angiogenesis in growing tumours, we investigated whether hypoxia regulates endosialin expression. Here, we demonstrate that endosialin gene transcription is induced by hypoxia predominantly through a mechanism involving hypoxia-inducible factor-2 (HIF-2) cooperating with the Ets-1 transcription factor. We show that HIF-2 activates the endosialin promoter both directly, through binding to a hypoxia-response element adjacent to an Ets-binding site in the distal part of the upstream regulatory region, and indirectly, through Ets-1 and its two cognate elements in the proximal promoter. Our data also suggest that the SP1 transcription factor mediates responsiveness of the endosialin promoter to high cell density. These findings elucidate important aspects of endosialin gene regulation and provide a rational frame for future investigations towards better understanding of its biological significance

    Multimerin-2 is a ligand for group14 family C-type lectins CLEC14A, CD93 and CD248 spanning the endothelial pericyte interface:MMRN2 binds three group 14 family C-type lectins

    Get PDF
    The C-type lectin domain containing group 14 family members CLEC14A and CD93 are proteins expressed by endothelium and are implicated in tumour angiogenesis. CD248 (alternatively known as endosialin or tumour endothelial marker-1) is also a member of this family and is expressed by tumour-associated fibroblasts and pericytes. Multimerin-2 (MMRN2) is a unique endothelial specific extracellular matrix protein that has been implicated in angiogenesis and tumour progression. We show that the group 14 C-type lectins CLEC14A, CD93 and CD248 directly bind to MMRN2 and only thrombomodulin of the family does not. Binding to MMRN2 is dependent on a predicted long-loop region in the C-type lectin domain and is abrogated by mutation within the domain. CLEC14A and CD93 bind to the same non-glycosylated coiled-coil region of MMRN2, but the binding of CD248 occurs on a distinct non-competing region. CLEC14A and CD248 can bind MMRN2 simultaneously and this occurs at the interface between endothelium and pericytes in human pancreatic cancer. A recombinant peptide of MMRN2 spanning the CLEC14A and CD93 binding region blocks CLEC14A extracellular domain binding to the endothelial cell surface as well as increasing adherence of human umbilical vein endothelial cells to the active peptide. This MMRN2 peptide is anti-angiogenic in vitro and reduces tumour growth in mouse models. These findings identify novel protein interactions involving CLEC14A, CD93 and CD248 with MMRN2 as targetable components of vessel formation.</p

    Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin

    Get PDF
    Contains fulltext : 115429.pdf (publisher's version ) (Open Access)Cervical dystonia is characterized by involuntary, abnormal movements and postures of the head and neck. Current views on its pathophysiology, such as faulty sensorimotor integration and impaired motor planning, are largely based on studies of focal hand dystonia. Using resting state fMRI, we explored whether cervical dystonia patients have altered functional brain connectivity compared to healthy controls, by investigating 10 resting state networks. Scans were repeated immediately before and some weeks after botulinum toxin injections to see whether connectivity abnormalities were restored. We here show that cervical dystonia patients have reduced connectivity in selected regions of the prefrontal cortex, premotor cortex and superior parietal lobule within a distributed network that comprises the premotor cortex, supplementary motor area, primary sensorimotor cortex, and secondary somatosensory cortex (sensorimotor network). With regard to a network originating from the occipital cortex (primary visual network), selected regions in the prefrontal and premotor cortex, superior parietal lobule, and middle temporal gyrus areas have reduced connectivity. In selected regions of the prefrontal, premotor, primary motor and early visual cortex increased connectivity was found within a network that comprises the prefrontal cortex including the anterior cingulate cortex and parietal cortex (executive control network). Botulinum toxin treatment resulted in a partial restoration of connectivity abnormalities in the sensorimotor and primary visual network. These findings demonstrate the involvement of multiple neural networks in cervical dystonia. The reduced connectivity within the sensorimotor and primary visual networks may provide the neural substrate to expect defective motor planning and disturbed spatial cognition. Increased connectivity within the executive control network suggests excessive attentional control and while this may be a primary trait, perhaps contributing to abnormal motor control, this may alternatively serve a compensatory function in order to reduce the consequences of the motor planning defect inflicted by the other network abnormalities

    Relevance of Molecular Mimicry in the Mediation of Infectious Myocarditis

    Get PDF
    Heart disease, the leading cause of death in humans, is estimated to affect one in four American adults in some form. One predominant cause of heart failure in young adults is myocarditis, which can lead to the development of dilated cardiomyopathy, a major indication for heart transplantation. Environmental microbes, including viruses, bacteria, and fungi that are otherwise innocuous, have the potential to induce inflammatory heart disease. As the list is growing, it is critical to determine the mechanisms by which microbes can trigger heart autoimmunity and, importantly, to identify their target antigens. This is especially true as microbes showing structural similarities with the cardiac antigens can predispose to heart autoimmunity by generating cross-reactive immune responses. In this review, we discuss the relevance of molecular mimicry in the mediation of infectious myocarditis
    corecore