708 research outputs found

    Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts

    Get PDF
    Transposable elements (TEs) constitute the majority of plant genomes, but most are epigenetically inactivated by their host. Research over the last decade has elucidated many of the molecular components that are required for TE silencing. In contrast, the evolutionary dynamics between TEs and silencing pathways are less clear. Here, we discuss current information about these dynamics from both mechanistic and evolutionary perspectives. We highlight new evidence that palindromic sequences within TEs may act as signals for host recognition and that cis-regulatory regions of TEs may be sites of ongoing arms races with host defenses. We also discuss patterns of TE aging after they are silenced; while there is not yet a consensus, it appears that TEs are removed more rapidly near genes, such that older TE insertions tend to be farther from genes. We conclude by discussing the energetic costs for maintaining silencing pathways, which appear to be substantive. The maintenance of silencing pathways across many species suggests that epigenetic emergencies are frequent

    Modeling interactions between transposable elements and the plant epigenetic response: a surprising reliance on element retention

    Get PDF
    Transposable elements (TEs) compose the majority of angiosperm DNA. Plants counteract TE activity by silencing them epigenetically. One form of epigenetic silencing requires 21-22 nt small interfering RNAs that act to degrade TE mRNA and may also trigger DNA methylation. DNA methylation is reinforced by a second mechanism, the RNA-dependent DNA methylation (RdDM) pathway. RdDM relies on 24 nt small interfering RNAs and ultimately establishes TEs in a quiescent state. These host factors interact at a systems level, but there have been no system level analyses of their interactions. Here, we define a deterministic model that represents the propagation of active TEs, aspects of the host response and the accumulation of silenced TEs. We describe general properties of the model and also fit it to biological data in order to explore two questions. The first is why two overlapping pathways are maintained, given that both are likely energetically expensive. Under our model, RdDM silenced TEs effectively even when the initiation of silencing was weak. This relationship implies that only a small amount of RNAi is needed to initiate TE silencing, but reinforcement by RdDM is necessary to efficiently counter TE propagation. Second, we investigated the reliance of the host response on rates of TE deletion. The model predicted that low levels of deletion lead to few active TEs, suggesting that silencing is most efficient when methylated TEs are retained in the genome, thereby providing one explanation for the large size of plant genomes

    Response to Wang and Luo

    Get PDF
    This article is a response to Wang and Luo

    Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants

    Get PDF
    RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5’ nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination

    Hospitalized poisonings after renal transplantation in the United States

    Get PDF
    BACKGROUND: The national incidence of and risk factors for hospitalized poisonings in renal transplant recipients has not been reported. METHODS: Historical cohort study of 39,628 renal transplant recipients in the United States Renal Data System between 1 July 1994 and 30 June 1998. Associations with time to hospitalizations for a primary diagnosis of poisonings (ICD-9 codes 960.x-989.x) within three years after renal transplant were assessed by Cox Regression. RESULTS: The incidence of hospitalized poisonings was 2.3 patients per 1000 person years. The most frequent causes of poisonings were immunosuppressive agents (25.3%), analgesics/antipyretics (14.1%), psychotropic agents (10.0%), and insulin/antidiabetic agents (7.1%). In Cox Regression analysis, low body mass index (BMI, <21.6 vs. >28.3 kg/m(2), adjusted hazard ratio (AHR), 3.02, 95% CI, 1.45–6.28, and allograft rejection, AHR 1.83, 95% CI, 1.15–2.89, were the only factors independently associated with hospitalized poisonings. Hospitalized poisonings were independently associated with increased mortality (AHR, 1.54, 95% CI 1.22–1.92, p = 0.002). CONCLUSIONS: Hospitalized poisonings were associated with increased mortality after renal transplantation. However, almost all reported poisonings in renal transplant recipients were due to the use of prescribed medications. Allograft rejection and low BMI were the only independent risk factors for poisonings identified in this population

    Homoeologous gene silencing in tissue cultured wheat callus

    Get PDF
    Abstract Background In contrast to diploids, most polyploid plant species, which include the hexaploid bread wheat, possess an additional layer of epigenetic complexity. Several studies have demonstrated that polyploids are affected by homoeologous gene silencing, a process in which sub-genomic genomic copies are selectively transcriptionally inactivated. This form of silencing can be tissue specific and may be linked to developmental or stress responses. Results Evidence was sought as to whether the frequency of homoeologous silencing in in vitro cultured wheat callus differ from that in differentiated organs, given that disorganized cells are associated with a globally lower level of DNA methylation. Using a reverse transcription PCR (RT-PCR) single strand conformation polymorphism (SSCP) platform to detect the pattern of expression of 20 homoeologous sets of single-copy genes known to be affected by this form of silencing in the root and/or leaf, we observed no silencing in any of the wheat callus tissue tested. Conclusion Our results suggest that much of the homoeologous silencing observed in differentiated tissues is probably under epigenetic control, rather than being linked to genomic instability arising from allopolyploidization. This study reinforces the notion of plasticity in the wheat epi-genome.</p

    Instability of Plastid DNA in the Nuclear Genome

    Get PDF
    Functional gene transfer from the plastid (chloroplast) and mitochondrial genomes to the nucleus has been an important driving force in eukaryotic evolution. Non-functional DNA transfer is far more frequent, and the frequency of such transfers from the plastid to the nucleus has been determined experimentally in tobacco using transplastomic lines containing, in their plastid genome, a kanamycin resistance gene (neo) readymade for nuclear expression. Contrary to expectations, non-Mendelian segregation of the kanamycin resistance phenotype is seen in progeny of some lines in which neo has been transferred to the nuclear genome. Here, we provide a detailed analysis of the instability of kanamycin resistance in nine of these lines, and we show that it is due to deletion of neo. Four lines showed instability with variation between progeny derived from different areas of the same plant, suggesting a loss of neo during somatic cell division. One line showed a consistent reduction in the proportion of kanamycin-resistant progeny, suggesting a loss of neo during meiosis, and the remaining four lines were relatively stable. To avoid genomic enlargement, the high frequency of plastid DNA integration into the nuclear genome necessitates a counterbalancing removal process. This is the first demonstration of such loss involving a high proportion of recent nuclear integrants. We propose that insertion, deletion, and rearrangement of plastid sequences in the nuclear genome are important evolutionary processes in the generation of novel nuclear genes. This work is also relevant in the context of transgenic plant research and crop production, because similar processes to those described here may be involved in the loss of plant transgenes
    corecore