2,655 research outputs found
Fish oil supplementation reverses the effect of cholesterol on apoptotic gene expression in smooth muscle cells
<p>Abstract</p> <p>Background</p> <p>Nutritional control of gene regulation guides the transformation of smooth muscle cells (SMC) into foam cells in atherosclerosis. Oxidative stress has been reported in areas of lipid accumulation, activating proliferation genes. Suppression of oxidative stress by antioxidant administration reduces this activation and the progression of lesions. We hypothesized that fish oil consumption may protect against atherosclerotic vascular disease. The study objective was to determine the effects of dietary cholesterol and fish-oil intake on the apoptotic pathways induced by 25-hydroxycholesterol (25-HC) in SMC cultures.</p> <p>Methods</p> <p>An <it>in vivo/in vitro </it>cell model was used, culturing SMC isolated from chicks exposed to an atherogenic cholesterol-rich diet with 5% of cholesterol (SMC-Ch) alone or followed by an anti-atherogenic fish oil-rich diet with 10% of menhaden oil (SMC-Ch-FO) and from chicks on standard diet (SMC-C). Cells were exposed to 25-HC, studying apoptosis levels by flow cytometry (Annexin V) and expressions of caspase-3, c-myc, and p53 genes by quantitative real-time reverse transcriptase-polymerase chain reaction. Results: Exposure to 25-HC produced apoptosis in all three SMC cultures, which was mediated by increases in caspase-3, c-myc, and p53 gene expression. Changes were more marked in SMC-Ch than in SMC-C, indicating that dietary cholesterol makes SMC more susceptible to 25-HC-mediated apoptosis. Expression of p53 gene was elevated in SMC-Ch-FO. This supports the proposition that endogenous levels of p53 protect SMC against apoptosis and possibly against the development of atherosclerosis. Fish oil attenuated the increase in c-myc levels observed in SMC-C and SMC-Ch, possibly through its influence on the expression of antioxidant genes.</p> <p>Conclusion</p> <p>Replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of the cholesterol-induced changes, increasing the resistance of SMC to apoptosis.</p
Controllable Entanglement of Lights in a Five-Level System
We analyze the nonlinear optical response of a five-level system under a
novel configuration of electro-magnetically induced transparency. We show that
a giant Kerr nonlinearity with a relatively large cross-phase modulation
coefficient that occurs in such system may be used to produce an efficient
photon-photon entanglement. We demonstrate that such photon-photon entanglement
is practically controllable and hence facilitates promising applications in
quantum information and computation.Comment: 13 pages, 4 figures, 1 column. We have added a section in which the
distortion of pulses due to the dispersion is considere
Efficiently Manifesting Asynchronous Programming Errors in Android Apps
Android, the #1 mobile app framework, enforces the single-GUI-thread model,
in which a single UI thread manages GUI rendering and event dispatching. Due to
this model, it is vital to avoid blocking the UI thread for responsiveness. One
common practice is to offload long-running tasks into async threads. To achieve
this, Android provides various async programming constructs, and leaves
developers themselves to obey the rules implied by the model. However, as our
study reveals, more than 25% apps violate these rules and introduce
hard-to-detect, fail-stop errors, which we term as aysnc programming errors
(APEs). To this end, this paper introduces APEChecker, a technique to
automatically and efficiently manifest APEs. The key idea is to characterize
APEs as specific fault patterns, and synergistically combine static analysis
and dynamic UI exploration to detect and verify such errors. Among the 40
real-world Android apps, APEChecker unveils and processes 61 APEs, of which 51
are confirmed (83.6% hit rate). Specifically, APEChecker detects 3X more APEs
than the state-of-art testing tools (Monkey, Sapienz and Stoat), and reduces
testing time from half an hour to a few minutes. On a specific type of APEs,
APEChecker confirms 5X more errors than the data race detection tool,
EventRacer, with very few false alarms
Wolbachia and DNA barcoding insects: patterns, potential and problems
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region
A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain
De Broglie Wavelength of a Nonlocal Four-Photon
Superposition is one of the most distinct features of quantum theory and has
been demonstrated in numerous realizations of Young's classical double-slit
interference experiment and its analogues. However, quantum entanglement - a
significant coherent superposition in multiparticle systems - yields phenomena
that are much richer and more interesting than anything that can be seen in a
one-particle system. Among them, one important type of multi-particle
experiments uses path-entangled number-states, which exhibit pure higher-order
interference and allow novel applications in metrology and imaging such as
quantum interferometry and spectroscopy with phase sensitivity at the
Heisenberg limit or quantum lithography beyond the classical diffraction limit.
Up to now, in optical implementations of such schemes lower-order interference
effects would always decrease the overall performance at higher particle
numbers. They have thus been limited to two photons. We overcome this
limitation and demonstrate a linear-optics-based four-photon interferometer.
Observation of a four-particle mode-entangled state is confirmed by
interference fringes with a periodicity of one quarter of the single-photon
wavelength. This scheme can readily be extended to arbitrary photon numbers and
thus represents an important step towards realizable applications with
entanglement-enhanced performance.Comment: 19 pages, 4 figures, submitted on November 18, 200
Adaptación Metodológica al EEES de la asignatura de Técnicas Instrumentales del Grado de Farmacia de la Universidad de Barcelona
[cast] En el plan de estudios del Grado de Farmacia de la Universidad de Barcelona, la asignatura de Técnicas Instrumentales se imparte en el cuarto semestre, después de haber cursado Física, Fisicoquímica y Química Analítica. El equipo docente de la asignatura está integrado por once profesores que mediante trabajo colaborativo y adecuada coordinación organizan la docencia de la misma que se distribuye en clases teóricas y prácticas. Con el objetivo de adaptar la asignatura a las necesidades del Espacio Europeo de Educación Superior, se distribuyó en tres Bloques: I, Técnicas Espectroscópicas; II, Técnicas Electroquímicas y III, Técnicas de Separación. Las actividades teórico-prácticas se han planificado de manera secuencial. Así se inicia el ciclo con las clases teóricas del Bloque I y a continuación de manera paralela se imparten las clases prácticas del Bloque I y las clases teóricas del Bloque II y así sucesivamente, de manera que se termina la docencia con las prácticas del último Bloque. En este proceso adquiere especial relevancia tanto la formación práctica en el laboratorio como el trabajo tutorizado que debe realizar el estudiante. Se realiza un proceso de evaluación continuada teórico/práctico en cada uno de los Bloques. Se da especial relevancia a la adquisición de habilidades y destrezas que permitan una correcta realización de las prácticas de laboratorio, es decir la integración de los contenidos específicos a la aplicación de las diferentes técnicas instrumentales, la resolución de los cálculos numéricos y la interpretación de los resultados. [eng] In the new syllabus of the Pharmacy degree at the University of Barcelona, the subject Analytical Techniques is taught at the fourth semester, after the subjects Physics, Physical chemistry and Analytical chemistry. The teaching team of this subject is integrated by eleven teachers that by means of collaborative work and an appropriate coordination, organize the docent activity into practical and theoretical classes. With the aim to adapt this subject to the requirements of the European space for higher education, it has been designed in three blocs: I. Spectroscopic techniques, II. Electrochemical techniques and, III. Separation techniques, by planning the theoretical and practical activities in a sequential manner. Therefore, the cycle begins with the theory of the first bloc followed with the practice corresponding to it together with the theory of the second bloc, and so on. The course ends with the practical part of the third bloc. In this process is of great importance the tutorial work that the student should do. The evaluation of the theory and of the practical part of each bloc is done in a continuous way paying special focus on the acquisition of abilities and handiness that will allow the correct performance in the laboratory. In summary, the integration of the specific contents to the application of the different instrumental techniques, the resolution of the numerical calculations and the interpretation of the results
Permeability Study of Polyphenols Derived from a Phenolic-Enriched Hibiscus sabdariffa Extract by UHPLC-ESI-UHR-Qq-TOF-MS
Previous findings on the capacity of Hibiscus sabdariffa (HS) polyphenols to ameliorate metabolic disturbances justify the necessity of studies oriented to find the potential metabolites responsible for such an effect. The present study examined the intestinal epithelial membrane permeability of polyphenols present in a phenolic-enriched Hibiscus sabdariffa extract (PEHS), free and encapsulated, using the Caco-2 cell line. Additionally, selected polyphenols (quercetin, quercetin-3-glucoside, quercetin-3-glucuronide, and N-feruloyltyramine) were also studied in the same absorption model. The powerful analytical platform used ultra-high-performance liquid chromatography coupled with ultra-high-resolution quadrupole time-of-flight mass spectrometry (UHPLC-ESI-UHR-Qq-TOF-MS), and enabled the characterization of seven new compounds in PEHS. In the permeation study, only a few compounds were able to cross the cell monolayer and the permeability was lower when the extract was in an encapsulated form. Pure compounds showed a moderate absorption in all cases. Nevertheless, these preliminary results may need further research to understand the complete absorption mechanism of Hibiscus polyphenols.This work was supported by projects AGL2011-29857-C03-02 and AGL2011-29857-C03-03 (Spanish Ministry of Science and Innovation), in addition to P10-FQM-6563 and P11-CTS-7625 (Andalusian Regional Government Council of Innovation and Science), PROMETEO/2012/007 and ACOMP/2013/093 (Generalitat Valenciana), and CIBER (CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III). The authors are grateful to the Spanish Ministry of Science and Innovation for the grant FPI (BES-2009-028128), and the Spanish Ministry of Economy and Competitiveness (MINECO) in association with the European Social Fund (FSE) for the contract PTQ-13-06429. MH is a recipient of a VALi + D fellowship from GV (ACIF/2010/162). The authors are especially grateful to Bruker Daltonik GmbH (Bremen, Germany) for their help and support during this research
Long distance quantum teleportation of qubits from photons at 1300 nm to photons at 1550 nm wavelength
Elementary 2-dimensional quantum states (qubits) encoded in 1300 nm
wavelength photons are teleported onto 1550 nm photons. The use of
telecommunication wavelengths enables to take advantage of standard optical
fibre and permits to teleport from one lab to a distant one, 55 m away,
connected by 2 km of fibre. A teleportation fidelity of 81.2 % is reported.
This is large enough to demonstrate the principles of quantum teleportation, in
particular that entanglement is exploited. This experiment constitutes a first
step towards a quantum repeater.Comment: 7 pages, 5 figures, Extended version of Nature lette
Detector decoy quantum key distribution
Photon number resolving detectors can enhance the performance of many
practical quantum cryptographic setups. In this paper, we employ a simple
method to estimate the statistics provided by such a photon number resolving
detector using only a threshold detector together with a variable attenuator.
This idea is similar in spirit to that of the decoy state technique, and is
specially suited for those scenarios where only a few parameters of the photon
number statistics of the incoming signals have to be estimated. As an
illustration of the potential applicability of the method in quantum
communication protocols, we use it to prove security of an entanglement based
quantum key distribution scheme with an untrusted source without the need of a
squash model and by solely using this extra idea. In this sense, this detector
decoy method can be seen as a different conceptual approach to adapt a single
photon security proof to its physical, full optical implementation. We show
that in this scenario the legitimate users can now even discard the double
click events from the raw key data without compromising the security of the
scheme, and we present simulations on the performance of the BB84 and the
6-state quantum key distribution protocols.Comment: 27 pages, 7 figure
- …