18 research outputs found

    Temperature-dependent polymorphism of N-(4-fluorophenyl)-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide: experimental and theoretical studies on intermolecular interactions in the crystal state

    Get PDF
    X-ray analysis of N-(4-fluorophenyl)-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide reveals the temperature-dependent polymorphism associated with the crystallographic symmetry conversion. The observed crystal structure transformation corresponds to a symmetry reduction from I41 /a (I) to P43 (II) space groups. The phase transition mainly concerns the subtle but clearly noticeable reorganization of molecules in the crystal space, with the structure of individual molecules left almost unchanged. The Hirshfeld surface analysis shows that various intermolecular contacts play an important role in the crystal packing, revealing graphically the differences in spatial arrangements of the molecules in both polymorphs. The N-oxide oxygen atom acts as a formally negatively charged hydrogen bonding acceptor in intramolecular hydrogen bond of N–H…O− type. The combined crystallographic and theoretical DFT methods demonstrate that the observed intramolecular N-oxide N–H…O hydrogen bond should be classified as a very strong charge-assisted and closed-shell non-covalent interaction

    Hardware Architecture for Real-time  Computation of Image Component Feature Descriptors on a FPGA

    No full text
    This paper describes a hardwarearchitecture for real-time image component labelingand the computation of image component featuredescriptors. These descriptors are object relatedproperties used to describe each image component.Embedded machine vision systems demand a robustperformance, power efficiency as well as minimumarea utilization, depending on the deployedapplication. In the proposed architecture, the hardwaremodules for component labeling and featurecalculation run in parallel. A CMOS image sensor(MT9V032), operating at a maximum clock frequencyof 27MHz, was used to capture the images. Thearchitecture was synthesized and implemented on aXilinx Spartan-6 FPGA. The developed architecture iscapable of processing 390 video frames per second ofsize 640x480 pixels. Dynamic power consumption is13mW at 86 frames per second

    Time-resolved emission imaging microscopy using phosphorescent metal complexes: taking FLIM and PLIM to new lengths

    No full text
    Luminescent metal complexes are increasingly being investigated as emissive probes and sensors for cell imaging using what is traditionally termed fluorescence microscopy. The nature of the emission in the case of second- and third-row metal complexes is phosphorescence rather than fluorescence, as it emanates from triplet rather than singlet excited states, but the usual terminology overlooks the distinction between the quantum mechanical origins of the processes. In steady-state imaging, such metal complexes may be alternatives to widely used fluorescent organic molecules, used in exactly the same way but offering advantages such as ease of synthesis and colour tuning. However, there is a striking difference compared to fluorescent organic molecules, namely the much longer lifetime of phosphorescence compared to fluorescence. Phosphorescence lifetimes of metal complexes are typically around a microsecond compared to the nanosecond values found for fluorescence of organic molecules. In this contribution, we will discuss how these long lifetimes can be put to practical use. Applications such as time-gated imaging allow discrimination from background fluorescence in cells and tissues, while increased sensitivity to quenchers provides a means of designing more responsive probes, for example, for oxygen. We also describe how the technique of fluorescence lifetime imaging microscopy (FLIM) – which provides images based on lifetimes at different points in the image – can be extended from the usual nanosecond range to microseconds. Key developments in instrumentation as well as the properties of complexes suitable for the purpose are discussed, including the use of two-photon excitation methods. A number of different research groups have made pioneering contributions to the instrumental set-ups, but the terminology and acronyms have not developed in a systematic way. We review the distinction between time-gating (to eliminate background emission) and true time-resolved imaging (whereby decay kinetics at each point in an image are monitored). For instance, terms such as PLIM (phosphorescence lifetime imaging microscopy) and TRLM (time-resolved luminescence microscopy) refer essentially to the same technique, whilst TREM (time-resolved emission imaging microscopy) embraces these long timescale methods as well as the more well-established technique of FLIM
    corecore