5,808 research outputs found
Charge-stripe order in the electronic ferroelectric LuFe2O4
The structural features of the charge ordering states in LuFe2O4 are
characterized by in-situ cooling TEM observations from 300K down to 20K. Two
distinctive structural modulations, a major q1= (1/3, 1/3, 2) and a weak
q2=q1/10 + (0, 0, 3/2), have been well determined at the temperature of 20K.
Systematic analysis demonstrates that the charges at low temperatures are well
crystallized in a charge stripe phase, in which the charge density wave
behaviors in a non-sinusoidal fashion resulting in elemental electric dipoles
for ferroelectricity. It is also noted that the charge ordering and
ferroelectric domains often change markedly with lowering temperatures and
yields a rich variety of structural phenomena.Comment: 15 pages, 4 figure
Fermi surface with Dirac fermions in CaFeAsF determined via quantum oscillation measurements
Despite the fact that 1111-type iron arsenides hold the record transition
temperature of iron-based superconductors, their electronic structures have not
been studied much because of the lack of high-quality single crystals. In this
study, we completely determine the Fermi surface in the antiferromagnetic state
of CaFeAsF, a 1111 iron-arsenide parent compound, by performing quantum
oscillation measurements and band-structure calculations. The determined Fermi
surface consists of a symmetry-related pair of Dirac electron cylinders and a
normal hole cylinder. From analyses of quantum-oscillation phases, we
demonstrate that the electron cylinders carry a nontrivial Berry phase .
The carrier density is of the order of 10 per Fe. This unusual metallic
state with the extremely small carrier density is a consequence of the
previously discussed topological feature of the band structure which prevents
the antiferromagnetic gap from being a full gap. We also report a nearly
linear-in- magnetoresistance and an anomalous resistivity increase above
about 30 T for , the latter of which is likely related to the
quantum limit of the electron orbit. Intriguingly, the electrical resistivity
exhibits a nonmetallic temperature dependence in the paramagnetic tetragonal
phase ( 118 K), which may suggest an incoherent state. Our study provides
a detailed knowledge of the Fermi surface in the antiferromagnetic state of
1111 parent compounds and moreover opens up a new possibility to explore
Dirac-fermion physics in those compounds.Comment: 11 pages, 7 figures, 1 tabl
A minimal BV action for Vasiliev's four-dimensional higher spin gravity
The action principle for Vasiliev's four-dimensional higher-spin gravity
proposed recently by two of the authors, is converted into a minimal BV master
action using the AKSZ procedure, which amounts to replacing the classical
differential forms by vectorial superfields of fixed total degree given by the
sum of form degree and ghost number. The nilpotency of the BRST operator is
achieved by imposing boundary conditions and choosing appropriate gauge
transitions between charts leading to a globally-defined formulation based on a
principal bundle.Comment: 39 pages, 1 figure. Additional comments in the conclusion
Recommended from our members
MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis.
Data-independent acquisition (DIA) in liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) provides comprehensive untargeted acquisition of molecular data. We provide an open-source software pipeline, which we call MS-DIAL, for DIA-based identification and quantification of small molecules by mass spectral deconvolution. For a reversed-phase LC-MS/MS analysis of nine algal strains, MS-DIAL using an enriched LipidBlast library identified 1,023 lipid compounds, highlighting the chemotaxonomic relationships between the algal strains
Second order backward stochastic differential equations and fully non-linear parabolic PDEs
We introduce a class of second order backward stochastic differential
equations and show relations to fully non-linear parabolic PDEs. In particular,
we provide a stochastic representation result for solutions of such PDEs and
discuss Monte Carlo methods for their numerical treatment.Comment: 26 page
Regioselective Nickel-Catalyzed Reductive Couplings of Enones and Allenes
No AbstractPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78305/1/anie_201004740_sm_miscellaneous_information.pd
Graphene-Based Nanostructures in Electrocatalytic Oxygen Reduction
Application of graphene-type materials in electrocatalysis is a topic of
growing scientific and technological interest. A tremendous amount of research
has been carried out in the field of oxygen electroreduction, particularly with
respect to potential applications in the fuel cell research also with use of
graphene-type catalytic components. This work addresses fundamental aspects and
potential applications of graphene structures in the oxygen reduction
electrocatalysis. Special attention will be paid to creation of catalytically
active sites by using non-metallic heteroatoms as dopants, formation of
hierarchical nanostructured electrocatalysts, their long-term stability, and
application as supports for dispersed metals (activating interactions)
Phase separation and ferroelectric ordering in charge frustrated LuFe2O4-x
The transmission electron microscopy observations of the charge ordering (CO)
which governs the electronic polarization in LuFe2O4-x clearly show the
presence of a remarkable phase separation at low temperatures. Two CO ground
states are found to adopt the charge modulations of Q1 = (1/3, 1/3, 0) and Q2 =
(1/3 + y, 1/3 + y, 3/2), respectively. Our structural study demonstrates that
the incommensurately Q2-modulated state is chiefly stable in samples with
relatively lower oxygen contents. Data from theoretical simulations of the
diffraction suggest that both Q1- and Q2-modulated phases have ferroelectric
ordering. The effects of oxygen concentration on the phase separation and
electric polarization in this layered system are discussed.Comment: 11 pages, 5 figure
Recommended from our members
Inhibition of synaptic transmission and G protein modulation by synthetic CaV2.2 Ca2+ channel peptides
Abstract: Modulation of presynaptic voltage-dependent Ca+ channels is a major means of controlling neurotransmitter release. The CaV 2.2 Ca2+ channel subunit contains several inhibitory interaction sites for Gβγ subunits, including the amino terminal (NT) and I–II loop. The NT and I–II loop have also been proposed to undergo a G protein-gated inhibitory interaction, whilst the NT itself has also been proposed to suppress CaV 2 channel activity. Here, we investigate the effects of an amino terminal (CaV 2.2[45–55]) ‘NT peptide’ and a I–II loop alpha interaction domain (CaV 2.2[377–393]) ‘AID peptide’ on synaptic transmission, Ca2+ channel activity and G protein modulation in superior cervical ganglion neurones (SCGNs). Presynaptic injection of NT or AID peptide into SCGN synapses inhibited synaptic transmission and also attenuated noradrenaline-induced G protein modulation. In isolated SCGNs, NT and AID peptides reduced whole-cell Ca2+ current amplitude, modified voltage dependence of Ca2+ channel activation and attenuated noradrenaline-induced G protein modulation. Co-application of NT and AID peptide negated inhibitory actions. Together, these data favour direct peptide interaction with presynaptic Ca2+ channels, with effects on current amplitude and gating representing likely mechanisms responsible for inhibition of synaptic transmission. Mutations to residues reported as determinants of Ca2+ channel function within the NT peptide negated inhibitory effects on synaptic transmission, Ca2+ current amplitude and gating and G protein modulation. A mutation within the proposed QXXER motif for G protein modulation did not abolish inhibitory effects of the AID peptide. This study suggests that the CaV 2.2 amino terminal and I–II loop contribute molecular determinants for Ca2+ channel function; the data favour a direct interaction of peptides with Ca2+ channels to inhibit synaptic transmission and attenuate G protein modulation. Non-technical summary: Nerve cells (neurones) in the body communicate with each other by releasing chemicals (neurotransmitters) which act on proteins called receptors. An important group of receptors (called G protein coupled receptors, GPCRs) regulate the release of neurotransmitters by an action on the ion channels that let calcium into the cell. Here, we show for the first time that small peptides based on specific regions of calcium ion channels involved in GPCR signalling can themselves inhibit nerve cell communication. We show that these peptides act directly on calcium channels to make them more difficult to open and thus reduce calcium influx into native neurones. These peptides also reduce GPCR-mediated signalling. This work is important in increasing our knowledge about modulation of the calcium ion channel protein; such knowledge may help in the development of drugs to prevent signalling in pathways such as those involved in pain perception
- …