1,788 research outputs found

    The first accurate parallax distance to a black hole

    Get PDF
    Using astrometric VLBI observations, we have determined the parallax of the black hole X-ray binary V404 Cyg to be 0.418 +/- 0.024 milliarcseconds, corresponding to a distance of 2.39 +/- 0.14 kpc, significantly lower than the previously accepted value. This model-independent estimate is the most accurate distance to a Galactic stellar-mass black hole measured to date. With this new distance, we confirm that the source was not super-Eddington during its 1989 outburst. The fitted distance and proper motion imply that the black hole in this system likely formed in a supernova, with the peculiar velocity being consistent with a recoil (Blaauw) kick. The size of the quiescent jets inferred to exist in this system is less than 1.4 AU at 22 GHz. Astrometric observations of a larger sample of such systems would provide useful insights into the formation and properties of accreting stellar-mass black holes.Comment: Accepted for publication in ApJ Letters. 6 pages, 2 figure

    Integrating Lean Six Sigma and discrete-event simulation for shortening the appointment lead-time in gynecobstetrics departments: a case study

    Get PDF
    Long waiting time to appointment may be a worry for pregnant women, particularly those who need perinatology consultation since it could increase anxiety and, in a worst case scenario, lead to an increase in fetal, infant, and maternal mortality. Treatment costs may also increase since pregnant women with diverse pathologies can develop more severe complications. As a step towards improving this process, we propose a methodological approach to reduce the appointment lead-time in outpatient gynecobstetrics departments. This framework involves combining the Six Sigma method to identify defects in the appointment scheduling process with a discrete-event simulation (DES) to evaluate the potential success of removing such defects in simulation before we resort to changing the real-world healthcare system. To do these, we initially characterize the gynecobstetrics department using a SIPOC diagram. Then, six sigma performance metrics are calculated to evaluate how well the department meets the government target in relation to the appointment lead-time. Afterwards, a cause-and-effect analysis is undertaken to identify potential causes of appointment lead-time variation. These causes are later validated through ANOVA, regression analysis, and DES. Improvement scenarios are next designed and pretested through computer simulation models. Finally, control plans are deployed to maintain the results achieved through the implementation of the DES-Six sigma approach. The aforementioned framework was validated in a public gynecobstetrics outpatient department. The results revealed that mean waiting time decreased from 6.9 days to 4.1 days while variance passed from 2.46 days2 to 1.53 days2

    CD98hc facilitates B cell proliferation and adaptive humoral immunity.

    Get PDF
    The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates

    The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the strategy for tissue regeneration using mesenchymal stem cells (MSCs) for transplantation, it is necessary that MSCs be accumulated and kept in the target area. To accumulate MSCs effectively, we developed a novel technique for a magnetic targeting system with magnetically labeled MSCs and an external magnetic force. In this study, we examined the effect of an external magnetic force on magnetically labeled MSCs in terms of cell adhesion and proliferation.</p> <p>Methods</p> <p>Magnetically labeled MSCs were plated at the bottom of an insert under the influence of an external magnetic force for 1 hour. Then the inserts were turned upside down for between 1 and 24 hours, and the number of MSCs which had fallen from the membrane was counted. The gene expression of MSCs affected magnetic force was analyzed with microarray. In the control group, the same procedure was done without the external magnetic force.</p> <p>Results</p> <p>At 1 hour after the inserts were turned upside down, the average number of fallen MSCs in the magnetic group was significantly smaller than that in the control group, indicating enhanced cell adhesion. At 24 hours, the average number of fallen MSCs in the magnetic group was also significantly smaller than that in control group. In the magnetic group, integrin alpha2, alpha6, beta3 BP, intercellular adhesion molecule-2 (ICAM-2), platelet/endothelial cell adhesion molecule-1 (PECAM-1) were upregulated. At 1, 2 and 3 weeks after incubation, there was no statistical significant difference in the numbers of MSCs in the magnetic group and control group.</p> <p>Conclusions</p> <p>The results indicate that an external magnetic force for 1 hour enhances cell adhesion of MSCs. Moreover, there is no difference in cell proliferation after using an external magnetic force on magnetically labeled MSCs.</p

    Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Get PDF
    In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET) pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors

    Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression

    Get PDF
    Fibronectin (FN) is a major component of the tumor microenvironment, but its role in promoting metastasis is incompletely understood. Here we show that FN gradients elicit directional movement of breast cancer cells, in vitro and in vivo. Haptotaxis on FN gradients requires direct interaction between α5β1 integrin and Mena, an actin regulator, and involves increases in focal complex signaling and tumor-cell-mediated extracellular matrix (ECM) remodeling. Compared to Mena, higher levels of the pro-metastatic MenaINV isoform associate with α5, which enables 3D haptotaxis of tumor cells towards the high FN concentrations typically present in perivascular space and in the periphery of breast tumor tissue. MenaINV and FN levels were correlated in two breast cancer cohorts, and high levels of MenaINV were significantly associated with increased tumor recurrence as well as decreased patient survival. Our results identify a novel tumor-cell-intrinsic mechanism that promotes metastasis through ECM remodeling and ECM guided directional migration

    In situ modification of nanostructure configuration through the manipulation of hydrogen bonded amphiphile self-association

    Get PDF
    Herein, we report the synthesis of a novel amphiphilic salt containing a number of hydrogen bond donating (HBD) and accepting (HBA) functionalities. This amphiphile has been shown to self-associate via hydrogen bond formation in a DMSO solution, confirmed through a combination of NMR, UV-Vis and dynamic light scattering and supported by X-ray diffraction studies. The combination of different HBD and HBA functionalities within the amphiphile structure gives rise to a variety of competitive, self-associative hydrogen bonding modes that result in the formation of ‘frustrated’ hydrogen bonded nanostructures. These nanostructures can be altered through the addition of competitive HBD arrays and/or HBA anionic guests. The addition of these competitive species modifies the type of self-associative hydrogen bonding modes present between the amphiphilic molecules, triggering the in situ formation of novel hydrogen bonded nanostructures
    corecore