294 research outputs found

    A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants.

    Get PDF
    Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort). Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands (discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were predominantly associated with nonsyndromic retinal degeneration ('retinal disease-specific'); these included the common c.2276 G>T, p.(Cys759Phe) mutation and five additional variants: c.2802 T>G, p.(Cys934Trp); c.10073 G>A, p.(Cys3358Tyr); c.11156 G>A, p.(Arg3719His); c.12295-3 T>A; and c.12575 G>A, p.(Arg4192His). An allelic hierarchy was observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The following model is proposed: the presence of at least one 'retinal disease-specific' USH2A allele in a patient with USH2A-related disease results in the preservation of normal hearing. Careful genotype-phenotype studies such as this will become increasingly important, especially now that high-throughput sequencing is widely used in the clinical setting.European Journal of Human Genetics advance online publication, 4 February 2015; doi:10.1038/ejhg.2014.283

    Mutation screening of retinal dystrophy patients by targeted capture from tagged pooled DNAs and next generation sequencing.

    Get PDF
    Purpose: Retinal dystrophies are genetically heterogeneous, resulting from mutations in over 200 genes. Prior to the development of massively parallel sequencing, comprehensive genetic screening was unobtainable for most patients. Identifying the causative genetic mutation facilitates genetic counselling, carrier testing and prenatal/pre-implantation diagnosis, and often leads to a clearer prognosis. In addition, in a proportion of cases, when the mutation is known treatment can be optimised and patients are eligible for enrolment into clinical trials for gene-specific therapies. Methods: Patient genomic DNA was sheared, tagged and pooled in batches of four samples, prior to targeted capture and next generation sequencing. The enrichment reagent was designed against genes listed on the RetNet database (July 2010). Sequence data were aligned to the human genome and variants were filtered to identify potential pathogenic mutations. These were confirmed by Sanger sequencing. Results: Molecular analysis of 20 DNAs from retinal dystrophy patients identified likely pathogenic mutations in 12 cases, many of them known and/or confirmed by segregation. These included previously described mutations in ABCA4 (c.6088C>T,p.R2030*; c.5882G>A,p.G1961E), BBS2 (c.1895G>C,p.R632P), GUCY2D (c.2512C>T,p.R838C), PROM1 (c.1117C>T,p.R373C), RDH12 (c.601T>C,p.C201R; c.506G>A,p.R169Q), RPGRIP1 (c.3565C>T,p.R1189*) and SPATA7 (c.253C>T,p.R85*) and new mutations in ABCA4 (c.3328+1G>C), CRB1 (c.2832_2842+23del), RP2 (c.884-1G>T) and USH2A (c.12874A>G,p.N4292D). Conclusions: Tagging and pooling DNA prior to targeted capture of known retinal dystrophy genes identified mutations in 60% of cases. This relatively high success rate may reflect enrichment for consanguineous cases in the local Yorkshire population, and the use of multiplex families. Nevertheless this is a promising high throughput approach to retinal dystrophy diagnostics

    Genetic Interaction of Centrosomin and Bazooka in Apical Domain Regulation in Drosophila Photoreceptor

    Get PDF
    Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes' role in photoreceptor morphogenesis. mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn's gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs). photoreceptor

    Increased High Density Lipoprotein-levels associated with Age-related Macular degeneration. Evidence from the EYE-RISK and E3 Consortia

    Get PDF
    Purpose Genetic and epidemiologic studies have shown that lipid genes and high-density lipoproteins (HDLs) are implicated in age-related macular degeneration (AMD). We studied circulating lipid levels in relationship to AMD in a large European dataset. Design Pooled analysis of cross-sectional data. Participants Individuals (N = 30 953) aged 50 years or older participating in the European Eye Epidemiology (E3) consortium and 1530 individuals from the Rotterdam Study with lipid subfraction data. Methods AMD features were graded on fundus photographs using the Rotterdam classification. Routine blood lipid measurements, genetics, medication, and potential confounders were extracted from the E3 database. In a subgroup of the Rotterdam Study, lipid subfractions were identified by the Nightingale biomarker platform. Random-intercepts mixed-effects models incorporating confounders and study site as a random effect were used to estimate associations. Main Outcome Measures AMD features and stage; lipid measurements. Results HDL was associated with an increased risk of AMD (odds ratio [OR], 1.21 per 1-mmol/l increase; 95% confidence interval [CI], 1.14–1.29), whereas triglycerides were associated with a decreased risk (OR, 0.94 per 1-mmol/l increase; 95% CI, 0.91–0.97). Both were associated with drusen size. Higher HDL raised the odds of larger drusen, whereas higher triglycerides decreases the odds. LDL cholesterol reached statistical significance only in the association with early AMD (P = 0.045). Regarding lipid subfractions, the concentration of extra-large HDL particles showed the most prominent association with AMD (OR, 1.24; 95% CI, 1.10–1.40). The cholesteryl ester transfer protein risk variant (rs17231506) for AMD was in line with increased HDL levels (P = 7.7 × 10–7), but lipase C risk variants (rs2043085, rs2070895) were associated in an opposite way (P = 1.0 × 10–6 and P = 1.6 × 10–4). Conclusions Our study suggested that HDL cholesterol is associated with increased risk of AMD and that triglycerides are negatively associated. Both show the strongest association with early AMD and drusen. Extra-large HDL subfractions seem to be drivers in the relationship with AMD, and variants in lipid genes play a more ambiguous role in this association. Whether systemic lipids directly influence AMD or represent lipid metabolism in the retina remains to be answered.</p

    GFAP-Driven GFP Expression in Activated Mouse Muller Glial Cells Aligning Retinal Blood Vessels Following Intravitreal Injection of AAV2/6 Vectors

    Get PDF
    Background: Muller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Muller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy.Methodology/Principal Findings: We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Muller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Muller glial cells, several other inner retinal cell types were transduced. To obtain Muller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1(-/-) retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Muller glial cells aligning retinal blood vessels.Conclusions/Significance: Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells

    The cost-effectiveness of increasing alcohol taxes: a modelling study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive alcohol use increases risks of chronic diseases such as coronary heart disease and several types of cancer, with associated losses of quality of life and life-years. Alcohol taxes can be considered as a public health instrument as they are known to be able to decrease alcohol consumption. In this paper, we estimate the cost-effectiveness of an alcohol tax increase for the entire Dutch population from a health-care perspective focusing on health benefits and health-care costs in alcohol users.</p> <p>Methods</p> <p>The chronic disease model of the National Institute for Public Health and the Environment was used to extrapolate from decreased alcohol consumption due to tax increases to effects on health-care costs, life-years gained and quality-adjusted life-years gained, A Dutch scenario in which tax increases for beer are planned, and a Swedish scenario representing one of the highest alcohol taxes in Europe, were compared with current practice in the Netherlands. To estimate cost-effectiveness ratios, yearly differences in model outcomes between intervention and current practice scenarios were discounted and added over the time horizon of 100 years to find net present values for incremental life-years gained, quality-adjusted life-years gained, and health-care costs.</p> <p>Results</p> <p>In the Swedish scenario, many more quality-adjusted life-years were gained than in the Dutch scenario, but both scenarios had almost equal incremental cost-effectiveness ratios: €5100 per quality-adjusted life-year and €5300 per quality-adjusted life-year, respectively.</p> <p>Conclusion</p> <p>Focusing on health-care costs and health consequences for drinkers, an alcohol tax increase is a cost-effective policy instrument.</p

    Clinical course of cone dystrophy caused by mutations in the RPGR gene

    Get PDF
    Contains fulltext : 97720.pdf (publisher's version ) (Closed access)BACKGROUND: Mutations in the RPGR gene predominantly cause rod photoreceptor disorders with a large variability in clinical course. In this report, we describe two families with mutations in this gene and cone involvement. METHODS: We investigated an X-linked cone dystrophy family (1) with 25 affected males, 25 female carriers, and 21 non-carriers, as well as a small family (2) with one affected and one unaffected male. The RPGR gene was analyzed by direct sequencing. All medical records were evaluated, and all available data on visual acuity, color vision testing, ophthalmoscopy, fundus photography, fundus autofluorescence, Goldmann perimetry, SD-OCT, dark adaptation, and full-field electroretinography (ERG) were registered. Cumulative risks of visual loss were studied with Kaplan-Meier product-limit survival analysis. RESULTS: Both families had a frameshift mutation in ORF15 of the RPGR gene; family 1 had p.Ser1107ValfsX4, and family 2 had p.His1100GlnfsX10. Mean follow up was 13 years (SD 10). Virtually all affected males showed reduced photopic and normal scotopic responses on ERG. Fifty percent of the patients had a visual acuity of <0.5 at age 35 years (SE 2.2), and 75% of the patients was legally blind at age 60 years (SE 2.3). Female carriers showed no signs of ocular involvement. CONCLUSIONS: This report describes the clinical course and visual prognosis in two families with cone dystrophy due to RPGR mutations in the 3' terminal region of ORF15. Remarkable features were the consistent, late-onset phenotype, the severe visual outcome, and the non-expression in female carriers. Expression of RPGR mutations in this particular region appears to be relatively homogeneous and predisposed to cones
    corecore