171 research outputs found

    Biomass loss and nutrient redistribution in an Indonesian Thalassia hemprichii seagrass bed following seasonal low tide exposure during daylight

    Full text link
    The intertidal reef flat of Barang Lompo Island, Indonesia, is exposed to air for several hours per day on the days around spring tides. The time of exposure shows a seasonal pattern. In the period January-June, the reef flat only runs dry at night, whereas in the period July-December, exposure only occurs during daylight. During the low tide daylight exposure period of July-December 1993, the leaf and rhizome biomasses (g m(-2)) declined significantly by 61 and 37%, respectively. Total rhizome length remained unchanged. C- and P-concentrations (% of dry weight) of leaves showed no change, while the leaf N- concentration increased by 25%. C-, N- and P-contents of leaves showed a decline that was strongly correlated to leaf biomass decline. In the rhizomes, C-concentration declined by 8%, but the N- and P-concentrations increased by 111 and 25%, respectively. Rhizome C-content (g m(-2)) declined (43%), N- content increased (46%) and P-content did not change. Total C- and P-contents of the summed biomass of leaves and rhizomes declined by 46 and 34%, respectively, but N-content showed no change. Ammonium and phosphate concentrations in the water column and pore water phosphate were not significantly different during daylight exposure compared to during nocturnal exposure. Ammonium concentration in the pore water, however, was 1.6 times higher during daylight exposure. Results show that during a period of frequent daylight exposure, the nutrient status in the intertidal Thalassia hemprichii seagrass bed changed considerably. Despite biomass reduction, the total nitrogen content in leaves and rhizomes together was constant, which was achieved by an enhanced nitrogen accumulation in the rhizomes. Two theories possibly responsible for the stable sum of the total leaf and rhizome nitrogen content are discussed. The first theory describes the seagrass bed as a relatively closed system with respect to nutrient cycles: detached leaf fragments remain trapped within the meadow. The second theory postulates that the loss of part of the photosynthesising canopy due to daylight exposure has a series of consequences for microbial N-transformation processes in the sediment, which indirectly affects the plants' nitrogen status. This study shows that Thalassia hemprichii, covering the reef flat of an intertidal tropical offshore coral island, which is often considered as a nutrient-poor environment, is rather resilient to a significant canopy die-off and concomitant nutrient losses. [KEYWORDS: daylight exposure; seagrass; biomass redistribution; nutrient contents; Thalassia hemprichii; Indonesia South sulawesi indonesia; banks ex konig; cymodocea-nodosa; syringodium filiforme; terrigenous sediments; zostera capricorni; halodule-wrightii; leaf growth; testudinum; carbonate

    Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter

    Get PDF
    Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients

    Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds

    Get PDF
    The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio

    Solar Radiation and Tidal Exposure as Environmental Drivers of Enhalus acoroides Dominated Seagrass Meadows

    Get PDF
    There is strong evidence of a global long-term decline in seagrass meadows that is widely attributed to anthropogenic activity. Yet in many regions, attributing these changes to actual activities is difficult, as there exists limited understanding of the natural processes that can influence these valuable ecosystem service providers. Being able to separate natural from anthropogenic causes of seagrass change is important for developing strategies that effectively mitigate and manage anthropogenic impacts on seagrass, and promote coastal ecosystems resilient to future environmental change. The present study investigated the influence of environmental and climate related factors on seagrass biomass in a large ≈250 ha meadow in tropical north east Australia. Annual monitoring of the intertidal Enhalus acoroides (L.f.) Royle seagrass meadow over eleven years revealed a declining trend in above-ground biomass (54% significant overall reduction from 2000 to 2010). Partial Least Squares Regression found this reduction to be significantly and negatively correlated with tidal exposure, and significantly and negatively correlated with the amount of solar radiation. This study documents how natural long-term tidal variability can influence long-term seagrass dynamics. Exposure to desiccation, high UV, and daytime temperature regimes are discussed as the likely mechanisms for the action of these factors in causing this decline. The results emphasise the importance of understanding and assessing natural environmentally-driven change when interpreting the results of seagrass monitoring programs

    Conformational studies of peptides representing a segment of TM7 from H+-VO-ATPase in SDS micelles

    Get PDF
    The conformation of a transmembrane peptide, sMTM7, encompassing the cytoplasmic hemi-channel domain of the seventh transmembrane section of subunit a from V-ATPase from Saccharomyces cerevisiae solubilized in SDS solutions was studied by circular dichroism (CD) spectroscopy and fluorescence spectroscopy of the single tryptophan residue of this peptide. The results show that the peptide adopts an α-helical conformation or aggregated β-sheet depending on the peptide-to-SDS ratio used. The results are compared with published data about a longer version of the peptide (i.e., MTM7). It is concluded that the bulky, positively charged arginine residue located in the center of both peptides has a destabilizing effect on the helical conformation of the SDS-solubilized peptides, leading to β-sheet formation and subsequent aggregation

    New evidence for habitat specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers

    Get PDF
    Eelgrass Zostera marina is an ecosystem-engineering species of outstanding importance for coastal soft sediment habitats that lives in widely diverging habitats. Our first goal was to detect divergent selection and habitat adaptation at the molecular genetic level; hence, we compared three pairs of permanently submerged versus intertidal populations using genome scans, a genetic marker-based approach. Three different statistical approaches for outlier identification revealed divergent selection at 6 loci among 46 markers (6 SNPs, 29 EST microsatellites and 11 anonymous microsatellites). These outlier loci were repeatedly detected in parallel habitat comparisons, suggesting the influence of habitat-specific selection. A second goal was to test the consistency of the general genome scan approach by doubling the number of gene-linked microsatellites and adding single nucleotide polymorphism (SNP) loci, a novel marker type for seagrasses, compared to a previous study. Reassuringly, results with respect to selection were consistent among most marker loci. Functionally interesting marker loci were linked to genes involved in osmoregulation and water balance, suggesting different osmotic stress, and reproductive processes (seed maturation), pointing to different life history strategies. The identified outlier loci are valuable candidates for further investigation into the genetic basis of natural selection

    Metalloporphyrin intercalation in liposome membranes: ESR study

    Get PDF
    Liposomes characterized by membranes featuring diverse fluidity (liquid-crystalline and/or gel phase), prepared from egg yolk lecithin (EYL) and dipalmitoylphosphatidylcholine (DPPC), were doped with selected metalloporphyrins and the time-related structural and dynamic changes within the lipid double layer were investigated. Porphyrin complexes of Mg(II), Mn(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and the metal-free base were embedded into the particular liposome systems and tested for 350 h at 24°C using the electron spin resonance (ESR) spin probe technique. 5-DOXYL, 12-DOXYL, and 16-DOXYL stearic acid methyl ester spin labels were applied to explore the interior of the lipid bilayer. Only the 16-DOXYL spin probe detected evident structural changes inside the lipid system due to porphyrin intercalation. Fluidity of the lipid system and the type of the porphyrin complex introduced significantly affected the intermolecular interactions, which in certain cases may result in self-assembly of metalloporphyrin molecules within the liposome membrane, reflected in the presence of new lines in the relevant ESR spectra. The most pronounced time-related effects were demonstrated by the EYL liposomes (liquid-crystalline phase) when doped with Mg and Co porphyrins, whereas practically no spectral changes were revealed for the metal-free base and both the Ni and Zn dopants. ESR spectra of the porphyrin-doped gel phase of DPPC liposomes did not show any extra lines; however, they indicated the formation of a more rigid lipid medium. Electronic configuration of the porphyrin’s metal center appeared crucial to the degree of molecular reorganization within the phospholipid bilayer system

    Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica

    Get PDF
    The maximum size and age that clonal organisms can reach remains poorly known, although we do know that the largest natural clones can extend over hundreds or thousands of metres and potentially live for centuries. We made a review of findings to date, which reveal that the maximum clone age and size estimates reported in the literature are typically limited by the scale of sampling, and may grossly underestimate the maximum age and size of clonal organisms. A case study presented here shows the occurrence of clones of slow-growing marine angiosperm Posidonia oceanica at spatial scales ranging from metres to hundreds of kilometres, using microsatellites on 1544 sampling units from a total of 40 locations across the Mediterranean Sea. This analysis revealed the presence, with a prevalence of 3.5 to 8.9%, of very large clones spreading over one to several (up to 15) kilometres at the different locations. Using estimates from field studies and models of the clonal growth of P. oceanica, we estimated these large clones to be hundreds to thousands of years old, suggesting the evolution of general purpose genotypes with large phenotypic plasticity in this species. These results, obtained combining genetics, demography and model-based calculations, question present knowledge and understanding of the spreading capacity and life span of plant clones. These findings call for further research on these life history traits associated with clonality, considering their possible ecological and evolutionary implications

    A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps

    Get PDF
    Seagrasses are important habitat-formers and ecosystem engineers that are under threat from bloom-forming seaweeds. These seaweeds have been suggested to outcompete the seagrasses, particularly when facilitated by eutrophication, causing regime shifts where green meadows and clear waters are replaced with unstable sediments, turbid waters, hypoxia, and poor habitat conditions for fishes and invertebrates. Understanding the situations under which seaweeds impact seagrasses on local patch scales can help proactive management and prevent losses at greater scales. Here, we provide a quantitative review of available published manipulative experiments (all conducted at the patch-scale), to test which attributes of seaweeds and seagrasses (e.g., their abundances, sizes, morphology, taxonomy, attachment type, or origin) influence impacts. Weighted and unweighted meta-analyses (Hedges d metric) of 59 experiments showed generally high variability in attribute-impact relationships. Our main significant findings were that (a) abundant seaweeds had stronger negative impacts on seagrasses than sparse seaweeds, (b) unattached and epiphytic seaweeds had stronger impacts than ‘rooted’ seaweeds, and (c) small seagrass species were more susceptible than larger species. Findings (a) and (c) were rather intuitive. It was more surprising that ‘rooted’ seaweeds had comparatively small impacts, particularly given that this category included the infamous invasive Caulerpa species. This result may reflect that seaweed biomass and/or shading and metabolic by-products like anoxia and sulphides could be lower for rooted seaweeds. In conclusion, our results represent simple and robust first-order generalities about seaweed impacts on seagrasses. This review also documented a limited number of primary studies. We therefore identified major knowledge gaps that need to be addressed before general predictive models on seaweed-seagrass interactions can be build, in order to effectively protect seagrass habitats from detrimental competition from seaweeds
    • …
    corecore