248 research outputs found

    The Sleeping Brain's Influence on Verbal Memory: Boosting Resistance to Interference

    Get PDF
    Memories evolve. After learning something new, the brain initiates a complex set of post-learning processing that facilitates recall (i.e., consolidation). Evidence points to sleep as one of the determinants of that change. But whenever a behavioral study of episodic memory shows a benefit of sleep, critics assert that sleep only leads to a temporary shelter from the damaging effects of interference that would otherwise accrue during wakefulness. To evaluate the potentially active role of sleep for verbal memory, we compared memory recall after sleep, with and without interference before testing. We demonstrated that recall performance for verbal memory was greater after sleep than after wakefulness. And when using interference testing, that difference was even more pronounced. By introducing interference after sleep, this study confirms an experimental paradigm that demonstrates the active role of sleep in consolidating memory, and unmasks the large magnitude of that benefit

    Does Sleep Really Influence Face Recognition Memory?

    Get PDF
    Mounting evidence implicates sleep in the consolidation of various kinds of memories. We investigated the effect of sleep on memory for face identity, a declarative form of memory that is indispensable for nearly all social interaction. In the acquisition phase, observers viewed faces that they were required to remember over a variable retention period (0–36 hours). In the test phase, observers viewed intermixed old and new faces and judged seeing each before. Participants were classified according to acquisition and test times into seven groups. Memory strength (d′) and response bias (c) were evaluated. Substantial time spent awake (12 hours or more) during the retention period impaired face recognition memory evaluated at test, whereas sleep per se during the retention period did little to enhance the memory. Wakefulness during retention also led to a tightening of the decision criterion. Our findings suggest that sleep passively and transiently shelters face recognition memory from waking interference (exposure) but does not actively aid in its long-term consolidation

    Boosting Long-term Memory via Wakeful Rest: Intentional Rehearsal is not Necessary, Automatic Consolidation is Sufficient.

    Get PDF
    <div><p>People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as ‘foreign names in a bridge club abroad’ and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is <i>not</i> dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is <i>sufficient</i> for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.</p></div

    Memory for Semantically Related and Unrelated Declarative Information: The Benefit of Sleep, the Cost of Wake

    Get PDF
    Numerous studies have examined sleep's influence on a range of hippocampus-dependent declarative memory tasks, from text learning to spatial navigation. In this study, we examined the impact of sleep, wake, and time-of-day influences on the processing of declarative information with strong semantic links (semantically related word pairs) and information requiring the formation of novel associations (unrelated word pairs). Participants encoded a set of related or unrelated word pairs at either 9am or 9pm, and were then tested after an interval of 30 min, 12 hr, or 24 hr. The time of day at which subjects were trained had no effect on training performance or initial memory of either word pair type. At 12 hr retest, memory overall was superior following a night of sleep compared to a day of wakefulness. However, this performance difference was a result of a pronounced deterioration in memory for unrelated word pairs across wake; there was no sleep-wake difference for related word pairs. At 24 hr retest, with all subjects having received both a full night of sleep and a full day of wakefulness, we found that memory was superior when sleep occurred shortly after learning rather than following a full day of wakefulness. Lastly, we present evidence that the rate of deterioration across wakefulness was significantly diminished when a night of sleep preceded the wake period compared to when no sleep preceded wake, suggesting that sleep served to stabilize the memories against the deleterious effects of subsequent wakefulness. Overall, our results demonstrate that 1) the impact of 12 hr of waking interference on memory retention is strongly determined by word-pair type, 2) sleep is most beneficial to memory 24 hr later if it occurs shortly after learning, and 3) sleep does in fact stabilize declarative memories, diminishing the negative impact of subsequent wakefulness

    Delayed Onset of a Daytime Nap Facilitates Retention of Declarative Memory

    Get PDF
    BACKGROUND: Learning followed by a period of sleep, even as little as a nap, promotes memory consolidation. It is now generally recognized that sleep facilitates the stabilization of information acquired prior to sleep. However, the temporal nature of the effect of sleep on retention of declarative memory is yet to be understood. We examined the impact of a delayed nap onset on the recognition of neutral pictorial stimuli with an added spatial component. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed an initial study session involving 150 neutral pictures of people, places, and objects. Immediately following the picture presentation, participants were asked to make recognition judgments on a subset of "old", previously seen, pictures versus intermixed "new" pictures. Participants were then divided into one of four groups who either took a 90-minute nap immediately, 2 hours, or 4 hours after learning, or remained awake for the duration of the experiment. 6 hours after initial learning, participants were again tested on the remaining "old" pictures, with "new" pictures intermixed. CONCLUSIONS/SIGNIFICANCE: Interestingly, we found a stabilizing benefit of sleep on the memory trace reflected as a significant negative correlation between the average time elapsed before napping and decline in performance from test to retest (p = .001). We found a significant interaction between the groups and their performance from test to retest (p = .010), with the 4-hour delay group performing significantly better than both those who slept immediately and those who remained awake (p = .044, p = .010, respectively). Analysis of sleep data revealed a significant positive correlation between amount of slow wave sleep (SWS) achieved and length of the delay before sleep onset (p = .048). The findings add to the understanding of memory processing in humans, suggesting that factors such as waking processing and homeostatic increases in need for sleep over time modulate the importance of sleep to consolidation of neutral declarative memories

    Sleep Enforces the Temporal Order in Memory

    Get PDF
    BACKGROUND: Temporal sequence represents the main principle underlying episodic memory. The storage of temporal sequence information is thought to involve hippocampus-dependent memory systems, preserving temporal structure possibly via chaining of sequence elements in heteroassociative networks. Converging evidence indicates that sleep enhances the consolidation of recently acquired representations in the hippocampus-dependent declarative memory system. Yet, it is unknown if this consolidation process comprises strengthening of the temporal sequence structure of the representation as well, or is restricted to sequence elements independent of their temporal order. To address this issue we tested the influence of sleep on the strength of forward and backward associations in word-triplets. METHODOLOGY/PRINCIPAL FINDINGS: Subjects learned a list of 32 triplets of unrelated words, presented successively (A-B-C) in the center of a screen, and either slept normally or stayed awake in the subsequent night. After two days, retrieval was assessed for the triplets sequentially either in a forward direction (cueing with A and B and asking for B and C, respectively) or in a backward direction (cueing with C and B and asking for B and A, respectively). Memory was better for forward than backward associations (p<0.01). Sleep did not affect backward associations, but enhanced forward associations, specifically for the first (AB) transitions (p<0.01), which were generally more difficult to retrieve than the second transitions. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that consolidation during sleep strengthens the original temporal sequence structure in memory, presumably as a result of a replay of new representations during sleep in forward direction. Our finding suggests that the temporally directed replay of memory during sleep, apart from strengthening those traces, could be the key mechanism that explains how temporal order is integrated and maintained in the trace of an episodic memory

    Pharmacokinetics of acute tryptophan depletion using a gelatin-based protein in male and female Wistar rats

    Get PDF
    The essential amino acid tryptophan is the precursor of the neurotransmitter serotonin. By depleting the body of tryptophan, brain tryptophan and serotonin levels are temporarily reduced. In this paper, several experiments are described in which dose and treatment effects of acute tryptophan depletion (ATD) using a gelatin-based protein–carbohydrate mixture were studied in male and female Wistar rats. Two or three doses of tryptophan depleting mixture resulted in 65–70% depletion after 2–4 h in males. ATD effects were similar in females, although females may return to baseline levels faster. Treatment effects after four consecutive days of ATD were similar to the effects of 1 day of treatment. Object recognition memory was impaired 2, 4, and 6 h after the first of two doses of ATD, suggesting that the central effects occurred rapidly and continued at least 6 h, in spite of decreasing treatment effects on plasma tryptophan levels at that time point. The method of acute tryptophan depletion described here can be used to study the relationship between serotonin and behaviour in both male and female rats

    Mindfulness as a General Ingredient of Successful Psychotherapy

    Get PDF
    In this chapter I present a psychological conceptualization of mindfulness based on constructs in common therapeutic parlance. Taking a functional approach based on the skills and recognitions patients gain from the exercises commonly used in mindfulness training and avoiding exotic and cryptic language, it makes apparent both the commonality mindfulness has with modalities therapists will be already using in their clinical practice and the ways in which it may add something new and therapeutically useful. It also describes the evolutionary pressures that have shaped the biological imperatives driving the default movements of attention that result in day-to-day experience being experienced as less than pleasant; defaults that result in both the need for, and the challenge of cultivating mindfulness. So, while the instructions and narrative within which these principles are introduced into therapy will need to be adapted to the patient’s background and circumstances, an understanding and grounding in the principles enables the therapist both to skillfully make these adaptations to the training exercises and to make them immediately sensible to the patient, including the challenges they will meet in getting started

    Thyroid cancer susceptibility polymorphisms: confirmation of loci on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate a locus on 5q24

    Get PDF
    Five single nucleotide polymorphisms (SNPs) associated with thyroid cancer (TC) risk have been reported: rs2910164 (5q24); rs6983267 (8q24); rs965513 and rs1867277 (9q22); and rs944289 (14q13). Most of these associations have not been replicated in independent populations and the combined effects of the SNPs on risk have not been examined. This study genotyped the five TC SNPs in 781 patients recruited through the TCUKIN study. Genotype data from 6122 controls were obtained from the CORGI and Wellcome Trust Case-Control Consortium studies. Significant associations were detected between TC and rs965513A (p=6.35×10−34), rs1867277A (p=5.90×10−24), rs944289T (p=6.95×10−7), and rs6983267G (p=0.016). rs6983267 was most strongly associated under a recessive model (PGG vs GT + TT=0.004), in contrast to the association of this SNP with other cancer types. However, no evidence was found of an association between rs2910164 and disease under any risk model (p>0.7). The rs1867277 association remained significant (p=0.008) after accounting for genotypes at the nearby rs965513 (p=2.3×10−13) and these SNPs did not tag a single high risk haplotype. The four validated TC SNPs accounted for a relatively large proportion (∼11%) of the sibling relative risk of TC, principally owing to the large effect size of rs965513 (OR 1.74)
    corecore