68 research outputs found

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses

    Get PDF
    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana – SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD) – the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the “bird feeder effect”) and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future budworm outbreaks. Integrating standardized barcodes within food webs may ultimately change the face of community ecology. This will be most poignantly felt in food webs that have not yet been quantified. Here, more accurate and precise connections will be within the grasp of any researcher for the first time

    Lack of an Antibacterial Response Defect in Drosophila Toll-9 Mutant

    Get PDF
    Toll and Toll-like receptors represent families of receptors involved in mediating innate immunity response in insects and mammals. Although Drosophila proteome contains multiple Toll paralogs, Toll-1 is, so far, the only receptor to which an immune role has been attributed. In contrast, every single mammalian TLR is a key membrane receptor upstream of the vertebrate immune signaling cascades. The prevailing view is that TLR-mediated immunity is ancient. Structural analysis reveals that Drosophila Toll-9 is the most closely related to vertebrate TLRs and utilizes similar signaling components as Toll-1. This suggests that Toll-9 could be an ancestor of TLR-like receptors and could have immune function. Consistently, it has been reported that over-expression of Toll-9 in immune tissues is sufficient to induce the expression of some antimicrobial peptides in flies. These results have led to the idea that Toll-9 could be a constitutively active receptor that maintain significant levels of antimicrobial molecules and therefore provide constant basal protection against micro-organisms. To test theses hypotheses, we generated and analyzed phenotypes associated with a complete loss-of-function allele of Toll-9. Our results suggest that Toll-9 is neither required to maintain a basal anti-microbial response nor to mount an efficient immune response to bacterial infection

    Evidence of Inbreeding Depression on Human Height

    Get PDF
    WOS:000306840400001Peer reviewe
    corecore