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of tumor growth. Etirinotecan pegol was eliminated very 
slowly from the tumor (t1/2 = 17 days), achieving higher 
and more sustained tumor exposure when compared with 
conventional irinotecan. The increased tumor exposure fol-
lowing etirinotecan pegol correlated with strong and pro-
longed suppression of tumor growth. Sustained plasma 
exposure to active SN38 was consistently observed across 
nonclinical species (including mouse, rat, and dog) and 
translated to cancer patients.
Conclusions Etirinotecan pegol is the first long-acting 
topoisomerase 1 inhibitor that provides sustained exposure, 
which results in prolonged anti-tumor activity in a wide 
variety of cancer models.

Keywords Topoisomerase 1 inhibition · Anticancer 
activity · Etirinotecan pegol · SN38 · Pharmacokinetics

Introduction

The application of nanotechnology and polymer chem-
istry to improve chemotherapy is currently an active field 
of cancer research [1]. Nanoparticle chemotherapeutics 
aim to increase activity and improve the safety of conven-
tional chemotherapeutics by trafficking a greater fraction 
of administered drug directly to cancer cells in a controlled 
fashion. Polyethylene glycol (PEG)ylated liposomal doxo-
rubicin (Doxil®), liposomal daunorubicin (DaunoXome®), 
liposomal cytarabine (DepoCyt®), and paclitaxel-bound 
particles (Abraxane®) are members of this class of agents 
approved in the USA [2–5] for the treatment of solid 
tumors and hematological malignancies [6, 7]. Conjuga-
tion with PEG has also emerged as an effective technology 
for extending exposure to active agents and improving the 
pharmacokinetics (PK) and reducing the immunotoxicity 
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of proteins. Its application to small molecules is actively 
being pursued [8, 9].

Etirinotecan pegol (NKTR-102) is a long-acting poly-
mer conjugate of irinotecan, a topoisomerase 1 (Top1) 
inhibitor, designed to provide continuous exposure of SN38 
in tumors while avoiding high irinotecan and SN38 plasma 
concentrations that lead to high AUCs associated with 
unwanted side effects [10]. Etirinotecan pegol uses propri-
etary polymer conjugation with large-chain polyethylene 
glycols (PEGs) to enhance PK and pharmacodynamic (PD) 
characteristics of its active moiety. Schematically, etirinote-
can pegol consists of a 4-arm PEG polymer with a nominal 
molecular weight of 20 kDa, a cleavable ester-based linker, 
and one irinotecan molecule at the end of each arm (Fig. 1). 
Upon administration, the cleavable linker in etirinotecan 
pegol slowly hydrolyzes, resulting in sustained exposure to 
irinotecan that is subsequently metabolized into the active 
metabolite SN38.

The irinotecan pharmacophore of etirinotecan pegol is 
the active pharmaceutical ingredient of Camptosar® (camp-
tothecin-11; CPT-11), a Top1 inhibitor that is widely used 
as a chemotherapeutic agent [11]. CPT-11 is indicated for 
the treatment of colorectal cancer in combination with 
5-fluorouracil (5-FU) and folinic acid (first line) and as a 
single agent in patients who progressed following initial 
5-FU-based therapy (second line) [12–14]. Top1 inhibi-
tion with irinotecan has also demonstrated clinical benefits 
in the treatment of small cell lung cancer [15], non-small 
cell lung cancer [16], esophageal cancer [17], gastric can-
cer [18], central nervous system cancers [19], cervical can-
cer [20], breast cancer [21], and non-Hodgkin’s lymphoma 
[22]. The primary mode of action is through inhibition of 
the Top1 enzyme, resulting in the formation of covalent and 
nonreversible Top1-DNA complexes that are converted into 
lethal DNA lesions when the DNA replication fork collides 
with this stabilized complex [23]. Irinotecan is a prodrug 
that is activated via enzymatic cleavage of the C-10 side 
chain by carboxylesterases (CES) to generate the biologi-
cally active metabolite, 10-hydroxy-7-ethyl camptothecin 
or SN38, which has 100- to 1,000-fold more potent cyto-
toxicity in vitro compared with irinotecan [24].

Although irinotecan has clinical utility, its anti-tumor 
activity may be limited by the short half-life due to inac-
tivation at physiological pH by the opening of its lactone 
E-ring and rapid clearance of the parent drug and its active 
metabolite SN38. In humans, the terminal half-life (t1/2) of 
irinotecan is 9–14 h [25, 26], while the t1/2 of SN38 is 24–
47 h [26, 27]. The recommended irinotecan dose and sched-
ule of 350 mg/m2 every 21 days results in high peak plasma 
concentrations near the end of infusion. When administered 
as protracted infusions instead of short infusions, the tox-
icity profile of irinotecan changes, with lower incidences 
of cholinergic reactions and severe myelosuppression 

[28–30], suggesting that high peak plasma concentrations 
contribute to those known toxicities. Following infusion, 
concentrations of irinotecan and SN38 fall below 0.1 ng/
mL 5–7 days post-dose (SN38 concentrations less than 
0.1 ng/mL have been reported for up to 500 h in one study 
[26]), resulting in an absence of drug exposure until the 
next dose is administered. This short and intermittent expo-
sure could limit the effectiveness of the anti-tumor activity 
of irinotecan [21, 29].

Etirinotecan pegol was selected based on reduced peak 
plasma concentrations, prolonged tumor exposure, and 
improved biodistribution of irinotecan and SN38 to tumor 
sites. Using xenograft mouse models of human cancers, 
a library of irinotecan analogs with varying PEG sizes, 
architectures, and linkers was studied, leading to the iden-
tification of etirinotecan pegol. Here, we report the results 
from a series of studies comparing the in vivo performance 
of etirinotecan pegol and conventional irinotecan, includ-
ing evaluation of PK and PK/PD, which was tested in 
multiple animal species (mouse, rat, and dog), and activ-
ity in mouse xenograft models of human colorectal, non-
small cell lung, breast, gastric, and ovarian cancers. The 
promising results from these studies lead to the selec-
tion and Phase 2 clinical evaluation of etirinotecan pegol 
for advanced breast, ovarian, colorectal, small cell lung 
cancer, non-small cell lung cancers, and glioblastoma as 
well as subsequent Phase 3 evaluation for advanced breast 
cancer.

Materials and methods

Chemicals and reagents

Irinotecan (Camptosar® 20 mg/mL solution, Pharmacia & 
Upjohn Company) was diluted to appropriate concentra-
tions with normal saline in subdued light immediately prior 
to injection.

Irinotecan
Cleavable Linker

20 kDa, 4-arm PEG

Fig. 1  Schematic structure of etirinotecan pegol
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Etirinotecan pegol (Nektar Therapeutics) was dis-
solved in saline or 5 % dextrose in water to make a stock 
solution and then further diluted with saline or 5 % dex-
trose in water to achieve appropriate injection volumes 
(0.2 mL/10 g body weight in mice; 4 mL/kg for rat; 5 mL/
kg for dog). All doses and plasma tumor concentrations of 
etirinotecan pegol are expressed based on irinotecan con-
tent, which enables a direct comparison with irinotecan.

Animal studies

Female athymic nude mice (Ncr:Nu and Nu:Nu), male 
Sprague–Dawley rats, and male Beagle dogs were pur-
chased from Charles River Laboratories or Harlan Labo-
ratories. The mice were used for HT29, NCI-H460, MCF-
7, and A2780 xenograft studies. Female severe combined 
immunodeficient mice (CB.17/Icr-Prkdcscid) were pur-
chased from Charles River Laboratories and used for the 
NCI-N87 study. Mice were housed in microisolator cages 
with a 12-h light/dark cycle and received sterilized food 
and water ad libitum. Etirinotecan pegol and irinotecan 
were administered as an intravenous bolus in mice, 30-min 
intravenous infusion in rats, and 1-h intravenous infusion 
in dogs.

Pharmacokinetic and pharmacodynamic study 
in tumor-bearing mice

Tumor fragments (30–40 mg) of either human HT29 colon 
or NCI-H460 lung tumor were implanted subcutane-
ously near the right axillary area. Tumors were allowed to 
reach a median volume of 100–172 mm3 for HT29 tumors 
(13 days) and 100–245 mm3 for NCI-H460 (9 days) prior 
to the start of dosing. Animals were randomized into 
groups of 4 mice per sampling time and given 40-mg/kg 
irinotecan-equivalent intravenous bolus doses of etirinote-
can pegol or irinotecan on Days 0, 4, and 8. The length 
and width of each tumor was recorded 2–3 times a week, 
and the corresponding tumor volume was estimated using 
the formula L × W2/2 = mm3, where L and W refer to 
the larger and smaller perpendicular tumor dimensions, 
respectively. Animals found moribund or with tumors 
≥4,000 mm3, ulcerated, or sloughed off were euthanized 
prior to scheduled termination. Blood and tumor tissue 
samples were obtained using the following schedules: 
HT29 tumor-bearing mice: before dosing and 0.5, 1, 4, 8, 
and 12 h and 1, 2, 3, 4, 5, 10, 12, 15, 20, 30, 40, 50, and 
60 days after the start of dosing; NCI-H460 tumor-bearing 
mice: before dosing and 0.5, 1, 4, and 12 h and 1, 3, 5, 10, 
12, 15, 20, 25, and 30 days after the start of dosing. Blood 
samples were collected via retro-orbital sinus sampling into 
blood collection tubes containing 3 mg of sodium fluoride 
and 6 mg of Na2EDTA and kept on ice until centrifuged at 

2,100×g for 20 min at 4 °C. Plasma was harvested, frozen 
on dry ice, and stored at −80 °C until assayed. Immedi-
ately following blood collection, animals were euthanized, 
and the tumors were excised, frozen in liquid nitrogen, and 
stored at −80 °C until assayed.

Pharmacokinetic studies in rats and dogs

Blood samples were collected via a peripheral vein into 
blood collection tubes containing 1/20th the plasma volume 
of a dimethyl sulfoxide solution containing 50 mM phenyl-
methyl sulfonyl fluoride and 1 % acetic acid (v/v). Plasma 
was harvested by centrifugation at 2,100×g for 20 min at 
4 °C. Plasma was further stabilized by addition of 1 % ace-
tic acid and stored at −80 °C until assayed.

Assay of drug and metabolites in plasma and tumor

Plasma and tumor samples were assayed for etirinotecan 
pegol, irinotecan, and SN38 using liquid chromatogra-
phy–tandem mass spectrometry (LC–MS/MS) methods. 
Tumor tissue samples were homogenized in a 9× volume 
of homogenization buffer (containing sodium fluoride, phe-
nylmethyl sulfonyl fluoride, and sodium dodecyl sulfate) 
prior to extraction of analytes. SN38 from tumor homogen-
ate was extracted using protein precipitation with acetoni-
trile and quantified by LC–MS/MS using SN38 calibra-
tion standards. LC–MS/MS used a Synergy Hydro, 3 µm, 
50 × 2.0-mm column, operated at 50 °C, at a flow rate of 
0.4 mL/min with a gradient consisting of 0.1 % formic acid 
in water and 0.1 % formic acid in acetonitrile, coupled to 
an API 4000 (Applied Biosystems). Irinotecan and SN38 
from rat and dog plasma samples were extracted using pro-
tein precipitation with acetonitrile followed by liquid–liq-
uid extraction with methyl tertiary butyl ether. LC–MS/MS 
used an Onyx Monolithic C18, 3 µm, 100 × 3-mm column, 
operated at 30 °C, at a flow rate of 1–2.5 mL/min with a 
gradient consisting of 0.1 % formic acid in water and 0.2 % 
formic acid in 75:25 acetonitrile/methanol coupled to an 
API 4000 (Applied Biosystems). Etirinotecan pegol was 
extracted from separate aliquots using solid phase extrac-
tion (mice) or protein precipitation with acetonitrile (rat 
and dog). For mice, etirinotecan pegol was then hydrolyzed 
(pH 7, 90 °C for 2 h) to release irinotecan, which was quan-
tified by LC–MS/MS, using calibration standards contain-
ing etirinotecan pegol and irinotecan. LC–MS/MS used a 
Synergy Hydro 3 µm, 50 × 2.0-mm column, operated at 
50 °C, at a flow rate of 0.4 mL/min with a gradient consist-
ing of 0.1 % formic acid in water and 0.1 % formic acid in 
acetonitrile, coupled to an API 4000 (Applied Biosystems). 
For rat and dog plasma samples, supernatant from protein 
precipitation containing etirinotecan pegol was directly 
quantified by LC–MS/MS, using calibration standards 
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consisting of etirinotecan pegol. LC–MS/MS used an 
Intrada WP-RP, 50 × 2.0-mm column, operated at 60 °C, 
at a flow rate of 0.5–1.0 mL/min with a gradient consist-
ing of 0.8 % formic acid in water and 0.8 % formic acid in 
acetonitrile, coupled to an API 4000 (Applied Biosystems). 
The lower limits of quantitation for etirinotecan pegol were 
1.2 μg/mL in mouse plasma, 0.01 μg/mL in rat and dog 
plasma, and 12 μg/g in tumor homogenate. The lower lim-
its of quantification for irinotecan and SN38 were 0.001–
0.003 and 0.0002–0.003 μg/mL in plasma, and 0.030 and 
0.030 μg/g in tumor homogenate, respectively.

Plasma and tumor pharmacokinetics of etirinotecan pegol, 
irinotecan, and SN38

Mean mouse plasma and tumor concentration–time data 
for each analyte were fit with one- or two-compartment 
PK models [31], as dictated by each dataset, using Berke-
ley Madonna, version 8.3.18 (University of California in 
Berkeley), to predict a concentration–time profile for the 
duration of each study. The predicted mouse and measured 
rat and dog concentration–time profiles were analyzed with 
noncompartmental methods within WinNonlin (Profes-
sional version 5.2; Pharsight Corporation, Mountain View, 
CA) to estimate customary PK parameters.

Tumor pharmacokinetic and pharmacodynamic (PK/PD) 
analysis

Inhibitory Emax response PK/PD models based on the 
Gompertz equation [32] were developed for both tumor 
types to represent the rate of tumor growth as a function 
of tumor SN38 concentration. A schematic diagram of the 
PK/PD model is shown in Online Resource 1. Nonlinear 
regression analyses were used to simultaneously fit the 
mean relative tumor volume versus time data for control, 
irinotecan, and etirinotecan pegol treatment groups. For 
each tumor type, tumor SN38 PK parameters were fixed 
at values obtained from the PK modeling described above, 
and maximum effect (Emax) was fixed at a value of 1. The 
PD parameter values kgr (tumor intrinsic growth rate; 
day−1), Limit (limit of tumor growth), and EC50 (half-max-
imal effective inhibitory concentrations; μg/g) were opti-
mized using Runge–Kutta 4 integration and the multiple-fit 
curve fitting module of Berkeley Madonna.

Activity in mouse xenograft models

Female mice, aged 6–10 weeks and weighing 14–28 g, 
were used for the xenograft studies. For the HT29 and 
NCI-H460 models, tumor fragments from serial passages 
were implanted subcutaneously near the right axillary area. 
For the MCF-7 model, approximately 1 × 106 MCF-7 cells 

suspended in 50 % Matrigel™ were injected subcutane-
ously into the right flank. Two days prior to tumor implan-
tation, a 1-mg 17β-estradiol pellet (Innovative Research of 
America) was implanted subcutaneously. For the A2780 
model, 1 × 107 A2780 tumor cells suspended in phosphate 
buffered saline were injected subcutaneously into the right 
flank. For the NCI-N87 model, 1 × 107 NCI-N87 cells sus-
pended in 50 % Matrigel™ were injected subcutaneously 
into the right flank.

Tumors were allowed to reach a volume of 135–
184 mm3 for HT29 (Day 13 post-implant), 120–171 mm3 
for NCI-H460 (Day 8 post-implant), 50–129 mm3 for 
MCF-7 (Day 14 post-implant), 75–196 mm3 for A2780 
(Day 14 post-implant), and 108–196 mm3 for NCI-N87 
(Day 14 post-implant) prior to randomization into groups 
of 10 animals at the start of treatment. The highest dose of 
irinotecan administered was based on prior maximum tol-
erated dose (MTD) studies in each xenograft model. Etiri-
notecan pegol was administered at dose levels equivalent 
to irinotecan MTD or 100 mg/kg. Animals were monitored 
for toxicity by assessing average percentage weight change 
with the occurrence of toxicity defined as 10 % or more of 
animals in a given treatment group showing 20 % or more 
body weight loss and/or mortality. Tumor volume was 
estimated as described above. The median time to reach 
endpoints was determined: 1,500 mm3 for NCI-H460, 
1,000 mm3 for HT29, 700 mm3 for MCF-7, 2,000 mm3 for 
A2780, and 800 mm3 for NCI-N87 tumors. Animals with 
MCF-7 tumors that lost their estradiol pellet were excluded 
from determination of the median time to endpoint (TTE). 
Treatment outcome was evaluated by tumor growth delay 
(TGD) and regression rates. TGD was defined as the 
increase in the median TTE in each treatment group com-
pared with the control group (TC) and expressed in days. 
Partial regression was defined as a reduction to ≤50 % of 
starting tumor volume for three consecutive measurements. 
A complete regression was defined as a reduction in tumor 
volume to below measureable size (<3 × 3 mm) for three 
consecutive measurements.

Animals exhibiting poor condition due to tumor progres-
sion were euthanized. Studies were terminated on Days 59 
(HT29), 61 (NCI-H460), 72 (MCF-7), 60 (A2780, q7dx3), 
76 (A2780 qdx1), and 84 (NCI-N87).

Statistical and graphical analyses

The logrank test was used to analyze the significance of 
the differences between the TTE values of treated and con-
trol or etirinotecan pegol and irinotecan treated groups. 
Kaplan–Meier plots were constructed to show the per-
centage of animals remaining in the study to perform the 
logrank test. Median tumor growth curves show group 
median tumor volumes as a function of time. When an 
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animal exited the study due to tumor size, the final tumor 
volume recorded for the animal was included with the data 
used to calculate the group median tumor volume at subse-
quent time points. Prism (GraphPad) for Windows version 
5.04 was used for all graphic presentation and statistical 
analyses.

Results

Etirinotecan pegol leads to sustained plasma and tumor 
exposure in HT29 colon and NCI-H460 lung carcinoma 
models

After administration of irinotecan, a one-compartment 
PK model adequately described the rapid elimination of 

irinotecan from plasma (t½ = 1 h), as well as the rapid 
appearance in and elimination of irinotecan from tumor 
in both models (Fig. 2 for HT29; Online Resource 2 for 
NCI-H460). Although tumor irinotecan AUC was ~four-
fold higher compared with plasma (4.2 vs. 1.2 µg h/mL), 
irinotecan concentrations in both plasma and tumor were 
undetectable within 12 h after each irinotecan dose. In 
contrast, etirinotecan pegol concentrations were sustained 
after administration in both plasma and tumor throughout 
the 60-day (HT29) or 30-day (NCI-H460) study period. 
A three- and two-compartment PK model well described 
the concentrations of etirinotecan pegol in plasma and 
tumor, respectively. Administration of etirinotecan pegol 
resulted in a 400-fold and 200-fold greater plasma etiri-
notecan pegol AUC compared with the irinotecan AUC 
when administered as conventional irinotecan in the HT-29 
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Fig. 2  Observed and model-predicted plasma and tumor concen-
tration–time profiles (±SEM) after intravenous administration of 
three doses (Days 0, 4, 8) of conventional irinotecan and etirinote-
can pegol to HT29 tumor-bearing mice. a, b After administration of 
conventional irinotecan, plasma (a) and tumor (b) irinotecan con-
centrations rapidly declined to below measurable concentrations 
within 12 h of dosing. c After administration of etirinotecan pegol, 
plasma etirinotecan pegol concentrations also declined rapidly; how-
ever, the decline was less rapid than that observed for irinotecan, and 
concentrations remained measurable throughout each dosing inter-
val and for the duration of the study. d In contrast to plasma, etiri-

notecan pegol tumor concentrations continued to accumulate with 
each dose, reached a maximum after the last administration, and 
was followed by a slow decline. Starting 24 h after each dose, etiri-
notecan pegol concentrations in the tumor exceeded those in plasma, 
consistent with tumor targeting through the enhanced permeation 
and retention effect. IRN, irinotecan; EP, etirinotecan pegol; N = 4 
animals/timepoint. Etirinotecan pegol and irinotecan were admin-
istered as an intravenous bolus at 40-mg/kg irinotecan equivalents. 
Symbols, mean observed concentration values; solid lines, model-
predicted concentration values
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and NCI-H460 tumor models, respectively (520 or 250 vs. 
1.2 µg day/mL). Unlike administration of conventional iri-
notecan, the initial disposition phase for etirinotecan pegol 
(all etirinotecan pegol concentrations and PK parameters 
derived thereof are expressed based on irinotecan con-
tent to allow for a direct comparison with unconjugated 
irinotecan) was much slower in the tumor compared with 
plasma, as evidenced by its continued accumulation with 
each administration and higher concentrations in tumor 
compared with plasma. This pattern of higher concentra-
tions in tumor compared with plasma was maintained after 
the last administration until the end of the study, indicat-
ing the potential for sustained release of SN38 within the 
tumor. Tumor etirinotecan pegol Cmax concentrations were 
6 and 10 times higher compared with tumor irinotecan Cmax 
concentrations when administered as conventional irinote-
can in HT29 and H460 tumors. These higher and sustained 
etirinotecan pegol concentrations resulted in AUC(0-60d) 
values that were 200-fold greater (HT29) and AUC(0-30d) 

values that were 140-fold greater (NCI-H460) compared 
with conventional irinotecan administration (860 and 
600 µg day/g vs. 4.2 µg day/g).

Etirinotecan pegol accumulation in tumor leads to high 
tumor SN38 exposure that correlates with marked 
inhibition of tumor growth

To verify that the tumor-localizing capability of etirinote-
can pegol also translates to tumor localization of SN38, 
we measured intratumoral SN38 concentrations in HT29 
and H460 tumors. Tumor SN38 PK mirrored those of their 
respective parent drug: SN38 derived from conventional iri-
notecan became undetectable within 12 h of each irinote-
can administration, while SN38 derived from etirinotecan 
pegol continued to accumulate with each administration 
and remained above 100 ng/g until the last day of study 
(Fig. 3). Etirinotecan pegol delivered 300 times more SN38 
to HT29 tumors (31 vs. 0.100 µg day/g) and 260 times 
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Fig. 3  PK/PD relationship of tumor SN38 concentration (±SEM) 
and tumor volume after intravenous administration of conventional 
irinotecan, etirinotecan pegol, and vehicle to tumor-bearing mice. a, b 
After administration of conventional irinotecan, tumor SN38 concen-
trations (circles) rapidly declined to low or unmeasurable values, with 
lack of tumor growth suppression (solid triangles) compared with 
vehicle (open triangles) in HT29 (a) and H460 (b) tumor models. c, 
d After administration of etirinotecan pegol, tumor SN38 concentra-

tions (circles) continued to accumulate for several days after the last 
dose, leading to sustained tumor growth suppression (solid triangles) 
compared with vehicle (open triangles) in the HT29 (c) and H460 (d) 
tumor models. N = 4 animals/timepoint. Conventional irinotecan, 
etirinotecan pegol, and vehicle were administered as an intravenous 
bolus at 40-mg/kg irinotecan equivalents on Days 0, 4, and 8. Sym-
bols, mean observed values; dotted lines, model-predicted concentra-
tion values; solid lines, model-predicted tumor volumes
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more SN38 to NCI-H460 tumors (26 vs 0.110 µg day/g) 
compared with conventional irinotecan at an equivalent 
dose and schedule.

We next investigated the relationship between tumor 
SN38 exposure and tumor growth suppression. One- and 
two-compartment PK models coupled with an inhibitory 
Emax response model well described the time courses of 
tumor SN38 concentrations and resulting effects on tumor 
growth for conventional irinotecan and etirinotecan pegol, 
respectively (Fig. 3). Administration of etirinotecan pegol 
caused sustained suppression of tumors, while administra-
tion of conventional irinotecan failed to delay (HT29) or 
only transiently delayed (H460) tumor growth. Tumor vol-
umes at Day 60 had increased by only sixfold after etiri-
notecan pegol (compared with a 30-fold increase after 
conventional irinotecan) in the HT29 model, even though 
the last dose was administered 52 days earlier. Similarly, 
in the NCI-H460 model, tumor volumes at Day 30 had 
increased by only eightfold after etirinotecan pegol, even 
though the last dose was administered 16 days earlier. Fol-
lowing conventional irinotecan treatment, there was a ≥21-
fold increase in tumor volume over the same period. Tumor 
SN38 concentrations correlated well with the marked inhi-
bition of tumor growth. Estimates for PK/PD parameters 
kgr, Limit, and EC50 were as follows: 0.033 (day−1), 52, and 
0.20 µg/g for HT29; and 0.033 (day−1), 150, and 1.2 µg/g 
for NCI-H460, respectively. Tumor SN38 concentrations of 
this magnitude were not achieved or maintained after con-
ventional irinotecan administration, whereas etirinotecan 
pegol administration resulted in high and sustained tumor 
SN38 concentrations that exceeded the required inhibitory 
concentrations for weeks after administration of the last 
dose.

Etirinotecan pegol leads to increased and sustained 
anti-tumor activity compared with conventional irinotecan 
in a wide variety of tumor models

To assess whether the superior PK observed in the HT29 
and NCI-H460 tumor models translated into broad antitu-
mor activity, we compared activity of etirinotecan pegol 
and conventional irinotecan in a broad range of mouse 
tumor models. Median tumor volumes over time for all 
models are depicted in Fig. 4. Activity parameters are 
summarized in Table 1. The highest conventional irinote-
can dose given was the maximum tolerated dose for the 
respective model; etirinotecan pegol was dosed at match-
ing doses up to the irinotecan maximum tolerated dose or 
capped at 100 mg/kg. All doses of both drugs were well 
tolerated, with no treatment-related deaths and with maxi-
mum body weight losses of ≤11 % for etirinotecan pegol 
and ≤16 % for conventional irinotecan. In the HT29 colon, 
H460 lung, and MCF-7 breast tumor models, 3 doses of 

either compound were administered every 4 days start-
ing at 13, 8, and 14 days post-tumor inoculation, respec-
tively. Control tumors grew progressively and reached the 
tumor volume endpoints in 16 (HT29), 12 (H460), and 73 
(MCF-7) days. The highest dose of etirinotecan pegol sus-
tained tumor growth suppression in all three models. HT29 
tumors increased only 2.7-fold, and 9 of 10 animals did 
not reach the tumor endpoint by the end of the study on 
Day 77. H460 tumors treated with high doses of etirinote-
can pegol eventually started to grow on Day 37 but did not 
reach the endpoint by Day 56. In the breast tumor model, 
etirinotecan pegol suppressed tumor growth throughout the 
duration of the study at both doses tested, with none of the 
animals reaching their endpoint. In addition to sustained 
tumor growth delay, we observed regression responses in 
20 % (HT29), 10 % (H460), and 67 % (MCF-7) of animals. 
In contrast, conventional irinotecan administration resulted 
in little tumor growth suppression and no tumor regres-
sion in the HT29 and H460 models. Although conventional 
irinotecan showed a significant tumor growth delay in the 
breast tumor model, the regression rate was ≤30 %, and 
80 % of animals reached the tumor volume endpoint.

The NCI-N87 gastric and A2780 ovarian tumor mod-
els employed a weekly administration schedule, starting 
14 days post-tumor inoculation. Both models grew aggres-
sively and achieved their endpoints in a median of 18 (N87) 
and 14 (A2780) days. Weekly etirinotecan pegol achieved 
sustained tumor growth suppression in both models. In the 
gastric tumor model at the 100-mg/kg dose level, no tumor 
growth was observed during the 12-week period between 
start of dosing and end of the study. In fact, 50 % of animals 
had no tumor remaining, while the average tumor volume 
for the other 50 % of animals decreased by 73 % compared 
with that at the start of dosing. At 60 mg/kg, etirinotecan 
pegol also sustained tumor growth suppression, albeit to a 
lesser extent compared with the higher dose level. In the 
ovarian tumor model, we observed no tumor growth for 
4 weeks following administration of either dose of etiri-
notecan pegol. All animals showed decreased tumor mass, 
but the number of CRs increased with increasing dose. In 
contrast, conventional irinotecan showed only modest tumor 
growth delay and no regressions, and no animals survived 
to the planned end of the study. In addition to the weekly 
schedule, a single administration of 100 mg/kg etirinotecan 
pegol was assessed in the ovarian cancer model. Consistent 
with sustained tumor exposure, even the single dose pro-
vided sustained tumor growth suppression for 21 days with 
complete regression observed in all animals (Fig. 4f).

In summary, etirinotecan pegol was active in all tumors, 
with dose-related increases in the number of regressions 
and tumor growth delays. Median tumor growth delay 
was frequently the highest possible value for a study, 
with evidence of sustained tumor growth suppression for 
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2–10 weeks after administration of the last dose. Etiri-
notecan pegol was especially active in MCF-7 breast and 
NCI-N87 gastric tumors, where even the lowest dose levels 

showed maximal suppression of tumor growth. In contrast, 
conventional irinotecan at the MTD for each model resulted 
in little to no suppression of tumor growth.

a b

c d

e f

Fig. 4  Median tumor volume versus time following treatment with 
etirinotecan pegol or conventional irinotecan in tumor-bearing mice. 
Etirinotecan pegol (EP) and conventional irinotecan (IRN) were 
administered as an intravenous bolus at the indicated doses (number 

in legend) and schedules (arrows). All doses are expressed as the 
amount of irinotecan administered. Symbols, median values per treat-
ment group. N = 8–20 animals per treatment group
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Etirinotecan pegol pharmacokinetics is consistent 
across nonclinical animal species

As results obtained with one animal species do not neces-
sarily translate across different species [33], we assessed 
the PK of conventional irinotecan and etirinotecan pegol 
(including metabolites) in rats and dogs (Fig. 5). Plasma 

concentrations of etirinotecan pegol are sustained in all 
species. Plasma concentrations of the released metabolites 
irinotecan and SN38 are also sustained, but exposures vary 
across species, reflecting inherent differences in esterase 
activity. In all species, plasma irinotecan and SN38 Cmax 
values after etirinotecan pegol administration are less 
than those after conventional irinotecan administration. 

Table 1  Regressions and tumor growth delay for HT29, NCI-H460, MCF-7, NCI-N87, and A2780 tumor-bearing mice

ns not significant, nd not determined
a All doses are expressed as amount of irinotecan administered
b Tumor regression must be evident for three consecutive measurements to be so designated. Partial: ≤50 % of Day 1 volume; Complete: not 
palpable
c Endpoint for HT29 was tumor volume of 1,000 mm3 or Day 73; for NCI-H460 was 1,500 mm3 or Day 57; for MCF-7 was 700 mm3 or Day 
73; for NCI-N87 was 800 mm3 or Day 84; and for A2780 was 2,000 mm3 or Day 60
d Number of animals surviving through the end of study without reaching tumor endpoint
e Median number of days to reach tumor endpoint
f Tumor growth delay in treatment group

Treatment Dosea (mg/kg) Tumor regressionb Survivors not 
reaching tumor 
endpointc,d

Median TTEe 
(days)

TGDf (days) Statistical significance 
(p-value)

Partial Complete vs. Control vs. High dose 
irinotecan

HT29 colon tumor model

Control 0 0/20 0/20 0/20 16

Etirinotecan pegol 
Q4dx3

40 0/10 0/10 1/10 36 20 <0.001 <0.01

90 0/10 2/10 9/10 >60 >44 <0.001 <0.001

Irinotecan Q4dx3 40 0/10 0/10 0/10 26 10 <0.05

90 0/10 0/10 0/10 27 11 ns

NCI-H460 lung tumor model

Control 0 0/20 0/20 0/20 12

Etirinotecan pegol 
Q4dx3

40 0/8 0/8 0/8 28 16 <0.001 <0.01

90 0/9 1/9 1/9 48 36 <0.001 <0.001

Irinotecan Q4dx3 40 0/10 0/10 0/10 23 11 <0.001

90 0/10 0/10 0/10 24 12 <0.001

MCF-7 breast tumor model

Control 0 0/8 0/8 2/8 37

Etirinotecan pegol 
Q4dx3

20 0/8 3/8 5/8 >73 >36 <0.01 <0.01

40 0/8 6/9 9/9 >73 >36 <0.01 <0.01

Irinotecan Q4dx3 40 0/10 3/10 2/10 59 22 ns

NCI-N87 gastric tumor model

Control 0 0/9 0/9 0/9 18

Etirinotecan pegol 
Q7dx3

60 2/10 1/10 10/10 >84 >66 <0.001 <0.001

100 4/10 6/10 10/10 >84 >66 <0.001 <0.001

Irinotecan Q7dx3 60 0/10 0/10 0/10 30 12 <0.001

A2780 ovarian tumor model

Control 0 0/10 0/10 0/10 14

Etirinotecan pegol 
Q7dx3

50 5/10 5/10 3/10 48 34 <0.001 <0.001

100 2/10 8/10 3/10 46 32 <0.001 <0.001

Etirinotecan pegol 
Qdx1

100 0/10 10/10 1/10 44 32 <0.001 nd

Irinotecan Q7dx3 100 0/10 0/10 0/10 29 15 <0.001
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Consistent with the observations in mice, plasma etirinote-
can pegol concentrations remained detectable throughout 
the study period (14 days), while irinotecan concentrations 
rapidly declined to undetectable levels after administration 
of conventional irinotecan. As a result, SN38 was meas-
urable during the 14-day study period after etirinotecan 
pegol administration, while SN38 after administration of 
conventional irinotecan was undetectable 24 h post-dose. 
The plasma half-life of SN38 was estimated to be 14 and 
18 days in rats and dogs, respectively, similar to the 20-day 
etirinotecan pegol half-life estimated in the mouse stud-
ies. Compared with conventional irinotecan, the half-life of 
SN38 after etirinotecan pegol administration is 100 and 42 
times longer in rats and dogs, respectively.

Discussion

Etirinotecan pegol, a long-acting Top1 inhibitor designed to 
provide sustained exposure to SN38, was developed with 
the aim of providing increased anti-tumor activity and a 
better safety profile compared with short-acting Top1 inhib-
itors. In the nonclinical studies reported here, etirinotecan 

pegol outperformed irinotecan when studied at both equiv-
alent and lower doses in a broad range of tumor models, all 
with different tumor growth characteristics and sensitivi-
ties to irinotecan. Animals treated with etirinotecan pegol 
displayed durable tumor growth suppression and marked 
regression, while animals treated with conventional irinote-
can at MTD only exhibited temporary tumor growth inhibi-
tion as their best response. Consistent with our goal to cre-
ate a long-acting Top1 inhibitor, tumor growth suppression 
and complete regression continued for weeks after adminis-
tration of the last etirinotecan pegol dose in all tumor mod-
els, even when only a single dose was administered.

Etirinotecan pegol displayed properties previously not 
observed with polymeric nanoparticles, such as a circu-
lation half-life >14 days in nonclinical species and cor-
responding sustained exposure to irinotecan and SN38. 
These characteristics resulted in a gradual decline in 
plasma etirinotecan pegol concentration over time, yield-
ing a 300-fold increase in the exposure (measured by AUC) 
of etirinotecan pegol in mouse plasma that could distrib-
ute to the tumor compared with conventional irinotecan. 
Furthermore, elimination of etirinotecan pegol from the 
tumor was even slower compared with plasma, resulting in 

Fig. 5  Rat and dog pharma-
cokinetics of etirinotecan pegol, 
irinotecan, and SN38 after IV 
administration of etirinotecan 
pegol or irinotecan. Irinotecan 
and EP were administered 
as 30-min (rat) or 1-hr (dog) 
intravenous infusions at the 
indicated doses
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concentrations 2 to 50 times higher in the tumor compared 
with plasma for >90 % of the study period. This extent 
and duration of localization in tumor is consistent with the 
enhanced permeation and retention (EPR) effects demon-
strated for macromolecules [34, 35]. Tumor localization of 
etirinotecan pegol via EPR is pronounced and sustained, 
likely benefiting from the prolonged circulation in plasma, 
which promotes time-dependent extravasation through the 
leaky tumor microvasculature [36, 37], as well as the pas-
sive trapping of the high molecular weight polymer.

Etirinotecan pegol and conventional irinotecan are both 
prodrugs that require conversion to SN38 for activity. With 
simultaneous PK/PD modeling of control, irinotecan, and 
etirinotecan pegol treatments, we confirmed that tumor 
growth suppression was related to the extent and duration 
of tumor SN38 exposure. Etirinotecan pegol that accu-
mulated in tumor tissue most likely served as a reservoir 
for continued release of SN38 in the tumor tissue. The 
increased and sustained exposure of tumor tissue to SN38 
from etirinotecan pegol resulted in greatly increased and 
sustained tumor growth suppression compared with con-
ventional irinotecan. These PK/PD studies were the first 
to include PK monitoring of etirinotecan pegol, and we 
elected to use the same dose and schedule commonly used 
for conventional irinotecan in mouse models of human 
tumors. The resultant tumor SN38 concentration–time pro-
files after etirinotecan pegol treatment showed substantial 
accumulation beyond that needed to inhibit tumor growth. 
However, by simultaneously fitting the PK/PD model to 
tumor SN38 concentration and relative tumor volume ver-
sus time data from all treatment groups, it was possible to 
estimate tumor EC50 values. These values can be used to 
guide selection of dose and schedule in subsequent studies. 
In fact, administration of a single dose of etirinotecan pegol 
was explored in a mouse activity study using the A2780 
ovarian cancer model, which was conducted after PK/PD 
results were obtained. Consistent with the PK/PD results, 
the single dose was as efficacious as three weekly adminis-
trations of etirinotecan pegol.

Simulations using the HT29 tumor PK/PD model indi-
cated that administration of an IV infusion of 240 mg/
kg/day conventional irinotecan for 60 days would be 
required to achieve SN38 tumor exposure comparable to 
that observed with the 40-mg/kg etirinotecan pegol q4d×3 
regimen. This required daily dose of irinotecan is twice its 
single-dose LD10 in mice of ~120 mg/kg and would thus be 
expected to cause significant drug-related mortality. In con-
trast, 90 mg/kg of etirinotecan pegol administered q4d×3 
to mice with HT29 tumors was well tolerated, with only 
5 % loss in mean body weight.

Our studies also show that etirinotecan pegol and SN38 
derived from etirinotecan pegol remain in the plasma of rats 
and dogs for at least 14 days. In mice, etirinotecan pegol 

enhanced SN38 exposure in solid tumors, thereby improv-
ing anti-tumor activity. The sustained exposure to etirinote-
can pegol and SN38 described here in different animal spe-
cies was also observed in human cancer patients. Following 
administration of etirinotecan pegol, the elimination t1/2 
was 21 days for etirinotecan pegol and 50 days for SN38 
[38]. The etirinotecan pegol half-life is approximately 36 
times longer than the half-life for conventional irinotecan 
and represents a similar increase to that observed in non-
clinical species. Several polymeric conjugates of irinotecan 
or SN38, all intended to improve the PK properties of iri-
notecan or SN38, are being studied clinically. They include: 
MM-398, a liposomal formulation of irinotecan; ILH-305, 
a PEGylated liposomal formulation of irinotecan; EZN-
2208, a PEG conjugate of SN38; and NK-012, a copolymer 
consisting of PEG and partially SN38-bound polygluta-
mate. All conjugates have reported activity in nonclinical 
models compared with conventional irinotecan [39–42]; 
however, they have varied effects on SN38 exposure in 
patients, as reflected by SN38 half-lives of 75 h reported 
for MM-398 [43], 20 h for EZN-2208 [44], 209 h for NK-
012 [45], and undetectable SN38 levels by 96 h post-dose 
for ILH-305 [46]. The sustained exposure observed with 
etirinotecan pegol in cancer patients was associated with 
promising activity during both Phase 1 [38] and Phase 2 
[47, 48] studies of etirinotecan pegol. In particular, patients 
with third-line metastatic breast cancer of all types (includ-
ing triple-negative disease) who received etirinotecan pegol 
demonstrated a confirmed objective response rate of 29 % 
by RECIST criteria [48]. The advantages imparted by the 
polymer employed in etirinotecan pegol that are associ-
ated with superior activity and improved PK in the animal 
species thus translate well to the clinical setting, leading 
to the first long-acting Top1 inhibitor in Phase 3 clinical 
development.

In conclusion, etirinotecan pegol provides sustained 
SN38 exposure in mouse xenograft tumors and increased 
anti-tumor activity compared with short-acting, conven-
tional irinotecan. Our data show that prolonged circulation 
time and tumor localization mediated by the polymer moi-
ety in etirinotecan pegol result in increased tumor exposure 
to SN38. Furthermore, the favorable changes in plasma and 
tumor SN38 exposures following etirinotecan pegol dosing 
correlate well with superior suppression of tumor growth 
compared with conventional irinotecan. The anti-tumor 
activity observed in these preclinical studies support con-
tinued development of etirinotecan pegol for the treatment 
of a wide variety of tumors.
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