931 research outputs found

    The nature of the methanol maser ring G23.657-00.127

    Full text link
    Methanol masers are associated with young high-mass stars and are an important tool for investigating the process of massive star formation. The recently discovered methanol maser ring in G23.657-00.127 provides an excellent ``laboratory'' for a detailed study of the nature and physical origin of methanol maser emission, as well as parallax and proper motion measurements. Multi-epoch observations of the 12.2 GHz methanol maser line from the ring were conducted using the Very Long Baseline Array. Interferometric observations with milliarcsecond resolution enabled us to track single maser spots in great detail over a period of 2 years. We have determined the trigonometric parallax of G23.657-00.127 to be 0.313+/-0.039 mas, giving a distance of 3.19{+0.46}{-0.35} kpc. The proper motion of the source indicates that it is moving with the same circular velocity as the LSR, but it shows a large peculiar motion of about 35 km/s toward the Galactic center.Comment: 6 pages, 3 figures, accepted for publication in A&

    Extremely high precision VLBI astrometry of PSR J0437-4715 and implications for theories of gravity

    Full text link
    Using the recently upgraded Long Baseline Array, we have measured the trigonometric parallax of PSR J0437-4715 to better than 1% precision, the most precise pulsar distance determination made to date. Comparing this VLBI distance measurement to the kinematic distance obtained from pulsar timing, which is calculated from the pulsar's proper motion and apparent rate of change of orbital period, gives a precise limit on the unmodeled relative acceleration between the Solar System and PSR J0437-4715, which can be used in a variety of applications. Firstly, it shows that Newton's gravitational constant G is stable with time (\dot{G}/G = (-5 +- 26) x 10^{-13} yr^{-1}, 95% confidence). Secondly, if a stochastic gravitational wave background existed at the currently quoted limit, this null result would fail ~50% of the time. Thirdly, it excludes Jupiter-mass planets within 226 AU of the Sun in 50% of the sky (95% confidence). Finally, the ~1% agreement of the parallax and orbital period derivative distances provides a fundamental confirmation of the parallax distance method upon which all astronomical distances are based.Comment: 11 pages, 1 Figure, submitted to ApJ

    Three-dimensional cephalometric evaluation of maxillary growth following in utero repair of cleft lip and alveolar-like defects in the mid-gestational sheep model

    Get PDF
    Objective: To evaluate maxillary growth following in utero repair of surgically created cleft lip and alveolar (CLA)-like defects by means of three-dimensional (3D) computer tomographic (CT) cephalometric analysis in the mid-gestational sheep model. Methods: In 12 sheep fetuses a unilateral CLA-like defect was created in utero (untreated control group: 4 fetuses). Four different bone grafts were used for the alveolar defect closure. After euthanasia, CT scans of the skulls of the fetuses, 3D re-constructions, and a 3D-CT cephalometric analysis were performed. Results: The comparisons between the operated and nonoperated skull sides as well as of the maxillary asymmetry among the experimental groups revealed no statistically significant differences of the 12 variables used. Conclusions: None of the surgical approaches used for the in utero correction of CLA-like defects seem to affect significantly postsurgical maxillary growth; however, when bone graft healing takes place, a tendency for almost normal maxillary growth can be observed. Copyright (c) 2006 S. Karger AG, Basel

    Single-epoch VLBI imaging study of bright active galactic nuclei at 2 and 8 GHz

    Full text link
    We investigate statistical and individual astrophysical properties of active galactic nuclei (AGNs), such as parsec-scale flux density, core dominance, angular and linear sizes, maximum observed brightness temperatures of VLBI core components, spectral index distributions for core and jet components, and evolution of brightness temperature along the jets. Furthermore, we statistically compare core flux densities and brightness temperature as well as jet spectral indices of gamma-ray bright and weak sources. We used 19 very long baseline interferometry (VLBI) observing sessions carried out simultaneously at 2.3 and 8.6 GHz with the participation of 10 Very Long Baseline Array (VLBA) stations and up to 10 additional geodetic telescopes. The observations span the period 1998-2003. We present here single-epoch results from high-resolution radio observations of 370 AGNs. Our VLBI images at 2.3 and 8.6 GHz as well as Gaussian models are presented and analyzed. At least one-fourth of the cores are completely unresolved on the longest baselines of the global VLBI observations. The VLBI core components are partially opaque with the median value of spectral index of alpha_core=0.3, while the jet features are usually optically thin alpha_jet=-0.7. The spectral index typically decreases along the jet ridge line owing to the spectral aging, with a median value of -0.05 mas^-1. Brightness temperatures are found to be affected by Doppler boosting and reaching up to \sim10^13 K with a median of \sim2.5x10^11 K at both frequencies. The brightness temperature gradients along the jets typically follow a power law T_b\simr^-2.2 at both frequencies. 147 sources (40%) positionally associated with gamma-ray detections from the Fermi LAT Second Source Catalog have higher core flux densities and brightness temperatures, and are characterized by the less steep radio spectrum of the optically thin jet emission.Comment: 15 pages, 21 figures, accepted by A&A on May 22, 2012, machine readable tables are available from the source of the pape

    The Australia Telescope 20 GHz (AT20G) Survey: The Bright Source Sample

    Full text link
    The Australia Telescope 20 GHz (AT20G) Survey is a blind survey of the whole Southern sky at 20 GHz (with follow-up observations at 4.8 and 8.6 GHz) carried out with the Australia Telescope Compact Array (ATCA) from 2004 to 2007. The Bright Source Sample (BSS) is a complete flux-limited subsample of the AT20G Survey catalogue comprising 320 extragalactic (|b|>1.5 deg) radio sources south of dec = -15 deg with S(20 GHz) > 0.50 Jy. Of these, 218 have near simultaneous observations at 8 and 5 GHz. In this paper we present an analysis of radio spectral properties in total intensity and polarisation, size, optical identifications and redshift distribution of the BSS sources. The analysis of the spectral behaviour shows spectral curvature in most sources with spectral steepening that increases at higher frequencies (the median spectral index \alpha, assuming S\propto \nu^\alpha, decreases from \alpha_{4.8}^{8.6}=0.11 between 4.8 and 8.6 GHz to \alpha_{8.6}^{20}=-0.16 between 8.6 and 20 GHz), even if the sample is dominated by flat spectra sources (85 per cent of the sample has \alpha_{8.6}^{20}>-0.5). The almost simultaneous spectra in total intensity and polarisation allowed us a comparison of the polarised and total intensity spectra: polarised fraction slightly increases with frequency, but the shapes of the spectra have little correlation. Optical identifications provided an estimation of redshift for 186 sources with a median value of 1.20 and 0.13 respectively for QSO and galaxies.Comment: 34 pages, 19 figures, tables of data included, replaced with version published in MNRA

    Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation

    Get PDF
    Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas

    Anatomy and Taxonomic Status of the Chasmosaurine Ceratopsid Nedoceratops hatcheri from the Upper Cretaceous Lance Formation of Wyoming, U.S.A

    Get PDF
    Background: The validity of Nedoceratops hatcheri, a chasmosaurine ceratopsid dinosaur known from a single skull recovered in the Lance Formation of eastern Wyoming, U.S.A., has been debated for over a century. Some have argued that the taxon is an aberrant Triceratops, and most recently it was proposed that N. hatcheri represents an intermediate ontogenetic stage between ‘‘young adult’ ’ and ‘‘old adult’ ’ forms of a single taxon previously split into Triceratops and Torosaurus. Methodology/Principal Findings: The holotype skull of Nedoceratops hatcheri was reexamined in order to map reconstructed areas and compare the specimen with other ceratopsids. Although squamosal fenestrae are almost certainly not of taxonomic significance, some other features are unique to N. hatcheri. These include a nasal lacking a recognizable horn, nearly vertical postorbital horncores, and relatively small parietal fenestrae. Thus, N. hatcheri is tentatively considered valid, and closely related to Triceratops spp. The holotype of N. hatcheri probably represents an ‘‘old adult,’ ’ based upon bone surface texture and the shape of the horns and epiossifications on the frill. In this study, Torosaurus is maintained as a genus distinct from Triceratops and Nedoceratops. Synonymy of the three genera as ontogenetic stages of a single taxon would require cranial changes otherwise unknown in ceratopsids, including additions of ossifications to the frill and repeated alternation of bone surface texture between juvenile and adult morphotypes

    Virtual environments as memory training devices in navigational tasks for older adults.

    Get PDF
    Cognitive training approaches using virtual environments (VEs) might counter age-related visuospatial memory decline and associated difficulties in wayfinding. However, the effects of the visual design of a VE in route learning are not fully understood. Therefore, we created a custom-designed VE optimized for route learning, with adjusted levels of realism and highlighted landmark locations (MixedVE). Herein we tested participants' route recall performance in identifying direction of turn at the intersection with this MixedVE against two baseline alternatives (AbstractVE, RealisticVE). An older vs. a younger group solved the tasks in two stages (immediate vs. delayed recall by one week). Our results demonstrate that the MixedVE facilitates better recall accuracy than the other two VEs for both age groups. Importantly, this pattern persists a week later. Additionally, our older participants were mostly overconfident in their route recall performance, but the MixedVE moderated this potentially detrimental overconfidence. Before the experiment, participants clearly preferred the RealisticVE, whereas after the experiment, most of the younger, and many of the older participants, preferred the MixedVE. Taken together, our findings provide insights into the importance of tailoring visualization design in route learning with VEs. Furthermore, we demonstrate the great potential of the MixedVE and by extension, of similar VEs as memory training devices for route learning, especially for older participants

    Precision southern hemisphere VLBI pulsar astrometry II: Measurement of seven parallaxes

    Full text link
    Accurate measurement of pulsar distances via astrometry using very long baseline interferometry enables the improvement of Galactic electron density distribution models, improving distance estimates for the vast majority of pulsars for which parallax measurements are unavailable. However, pulsars at southern declinations have been under-represented in previous interferometric astrometry campaigns. In order to redress this imbalance, we have conducted a two-year astrometric campaign targeting eight southern pulsars with the Australian Long Baseline Array. The program summarized in this paper has resulted in the measurement of seven new pulsar parallaxes, with success on objects down to a mean flux density of 0.8 mJy at 1600 MHz. Our results highlight the substantial uncertainties that remain when utilizing free electron density models for individual pulsar distances. Until this study, PSR J0630-2834 was believed to convert 16% of its spin-down energy into x-rays, but our measured parallax distance of 332 (+52 -40) pc has revised this value to <1%. In contrast, PSR J0108-1431 was found to be almost a factor of two more distant than previously thought, making its conversion of spin-down energy to x-rays the most efficient known (>1%). The 8.5 second radio pulsar J2144-3933 was found to be closer than previously predicted, making its apparent 1400 MHz radio luminosity the lowest of any known pulsar (20 microJy kpc^2). We have examined the growing population of neutron stars with accurate parallaxes to determine the effect of distance errors on the underlying neutron star velocity distribution, and find that typical distance errors may be biasing the estimated mean pulsar velocity upwards by 5%, and are likely to exaggerate the distribution's high-velocity tail.Comment: 37 pages, 14 figures, accepted by Ap
    corecore