13 research outputs found

    Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia

    No full text
    Proton-coupled monocarboxylate transporters (MCT) MCT1, MCT3, and MCT4 form heterodimeric complexes with the cell surface glycoprotein CD147 and exhibit tissue-specific polarized distributions that are essential for maintaining lactate and pH homeostasis. In the parenchymal epithelia of kidney, thyroid, and liver, MCT/CD147 heterocomplexes are localized in the basolateral membrane where they transport lactate out of or into the cell depending on metabolic conditions. A unique distribution of lactate transporters is found in the retinal pigment epithelium (RPE), which regulates lactate levels of the outer retina. In RPE, MCT1/CD147 is polarized to the apical membrane and MCT3/CD147 to the basolateral membrane. The mechanisms responsible for tissue-specific polarized distribution of MCTs are unknown. Here, we demonstrate that CD147 carries sorting information for polarized targeting of the MCT1/CD147 hetero-complexes in kidney and RPE cells. In contrast, MCT3 and MCT4 harbor dominant sorting information that cotargets CD147 to the basolateral membrane in both epithelia. RNA interference experiments show that MCT1 promotes CD147 maturation. Our results open a unique paradigm to study the molecular basis of tissue-specific polarity

    Biochar application reduces nodulation but increases nitrogenase activity in clover

    No full text
    Background and aims: Biochar is produced from the pyrolysis of organic materials, and when buried in soil can act as a long term soil carbon (C) store. Evidence suggests that biochar can also increase crop yields, reduce nutrient leaching and increase biological nitrogen fixation in leguminous plants. However, the potential for increasing biological N2 fixation in agroecosystems is poorly understood, with inconsistent reports of root nodulation following biochar application. Therefore, the aim of this study was to determine the effect of biochar application rate and time since application on nodulation and nitrogenase activity in nodules of clover grown in a temperate agricultural soil. Methods: We used replicated field plots with three biochar application rates (0, 25 and 50 t ha-1). Three years after biochar amendment, the plots were further split and fresh biochar added at two different rates (25 and 50 t ha-1) resulting in double-loaded reapplications of 25 + 25 and 50 + 50 t ha-1. Results: Three years after biochar application, there was no significant difference in the total number of root nodules between biochar-amended and unamended soil, regardless of the application rate. However, despite clover root nodules being of a similar number and size the level of nitrogenase activity of individual nodules in biochar-amended soil was significantly higher than in unamended soil. Reapplication of biochar resulted in decreased nodulation, although the rate of nitrogenase activity per nodule remained unaffected. Conclusion: In the short term, biochar influences root nodule number and localised N2 fixation per nodule; however, total nitrogenase activity for the whole root system remained unaffected by the application rate of biochar or time since its application. These results emphasise the importance of long-term field studies, with a variety of applications rates for determining the influence of biochar applications on N2-fixing organisms and in providing data that can meaningfully inform agronomic management decisions and climate change mitigation strategies

    Regulated acid-base transport in the collecting duct

    Full text link
    The renal collecting system serves the fine-tuning of renal acid-base secretion. Acid-secretory type-A intercalated cells secrete protons via a luminally expressed V-type H(+)-ATPase and generate new bicarbonate released by basolateral chloride/bicarbonate exchangers including the AE1 anion exchanger. Efficient proton secretion depends both on the presence of titratable acids (mainly phosphate) and the concomitant secretion of ammonia being titrated to ammonium. Collecting duct ammonium excretion requires the Rhesus protein RhCG as indicated by recent KO studies. Urinary acid secretion by type-A intercalated cells is strongly regulated by various factors among them acid-base status, angiotensin II and aldosterone, and the Calcium-sensing receptor. Moreover, urinary acidification by H(+)-ATPases is modulated indirectly by the activity of the epithelial sodium channel ENaC. Bicarbonate secretion is achieved by non-type-A intercalated cells characterized by the luminal expression of the chloride/bicarbonate exchanger pendrin. Pendrin activity is driven by H(+)-ATPases and may serve both bicarbonate excretion and chloride reabsorption. The activity and expression of pendrin is regulated by different factors including acid-base status, chloride delivery, and angiotensin II and may play a role in NaCl retention and blood pressure regulation. Finally, the relative abundance of type-A and non-type-A intercalated cells may be tightly regulated. Dysregulation of intercalated cell function or abundance causes various syndromes of distal renal tubular acidosis underlining the importance of these processes for acid-base homeostasis
    corecore