74 research outputs found

    Doping a semiconductor to create an unconventional metal

    Full text link
    Landau Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, its defects, and the other ~1022/cm3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high temperature superconductors3, silicon-based field effect transistors which host two-dimensional metals4, and certain rare earth compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials - doped small gap semiconductors near a metal-insulator transition - can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have finally found a physical realization of the only mathematically rigourous route to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9-12.Comment: 17 pages 4 figures supplemental information included with 2 figure

    Large Anomalous Hall effect in a silicon-based magnetic semiconductor

    Full text link
    Magnetic semiconductors are attracting high interest because of their potential use for spintronics, a new technology which merges electronics and manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently emerged as the most popular materials for this new technology. While Curie temperatures are rising towards room temperature, these materials can only be fabricated in thin film form, are heavily defective, and are not obviously compatible with Si. We show here that it is productive to consider transition metal monosilicides as potential alternatives. In particular, we report the discovery that the bulk metallic magnets derived from doping the narrow gap insulator FeSi with Co share the very high anomalous Hall conductance of (GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens up a new arena for spintronics, involving a bulk material based only on transition metals and Si, and which we have proven to display a variety of large magnetic field effects on easily measured electrical properties.Comment: 19 pages with 5 figure

    Electron quantum metamaterials in van der Waals heterostructures

    Full text link
    In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques -- for example in the unique coloring of butterfly wings -- to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer sub-electron wavelength (as well as wavelength-scale) structuring of electronic matter, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures -- e.g., mechanical pick-up/transfer assembly -- atomic scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length-scales (such as electron wavelength, screening length, and electron mean free path). Yet electronic metamaterials promise far richer categories of behavior than those found in conventional optical metamaterial technologies. This is because unlike photons that scarcely interact with each other, electrons in subwavelength structured metamaterials are charged, and strongly interact. As a result, an enormous variety of emergent phenomena can be expected, and radically new classes of interacting quantum metamaterials designed

    Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Get PDF
    ntrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters

    Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2MX_2 (M=M= Mo, W and X=X= S, Se)

    Get PDF
    Single- and few-layer transition metal dichalcogenides have recently emerged as a new family of layered crystals with great interest, not only from the fundamental point of view, but also because of their potential application in ultrathin devices. Here we review the electronic properties of semiconducting MX2MX_2, where M=M=Mo or W and X=X= S or Se. Based on of density functional theory calculations, which include the effect of spin-orbit interaction, we discuss the band structure of single-layer, bilayer and bulk compounds. The band structure of these compounds is highly sensitive to elastic deformations, and we review how strain engineering can be used to manipulate and tune the electronic and optical properties of those materials. We further discuss the effect of disorder and imperfections in the lattice structure and their effect on the optical and transport properties of MX2MX_2. The superconducting transition in these compounds, which has been observed experimentally, is analyzed, as well as the different mechanisms proposed so far to explain the pairing. Finally, we include a discussion on the excitonic effects which are present in these systems.Comment: 9 pages, 4 figures. Short review article for special issue of Ann. Phys. on "Two-dimensional materials

    Dynamic Microstructural Evolution of Graphite under Displacing Irradiation

    Get PDF
    Graphitic materials and graphite composites experience dimensional change when exposed to radiation-induced atomic displacements. This has major implications for current and future technological ranging from nuclear fission reactors to the processing of graphene-silicon hybrid devices. Dimensional change in nuclear graphites is a complex problem involving the filler, binder, porosity, cracks and atomic-level effects all interacting within the polygranular structure. An improved understanding of the atomistic mechanisms which drive dimensional change within individual graphitic crystals is required to feed into the multiscale modelling of this system. In this study, micromechanically exfoliated samples of highly oriented pyrolytic graphite have been ion irradiated and studied in situ using transmission electron microscopy (TEM) in order to gain insights into the response of single graphitic crystals to displacing radiation. Under continuous ion bombardment, a complex dynamic sequence of deformation evolves featuring several distinct stages from the inducement of strain, the creation of dislocations leading to dislocation arrays, the formation of kink band networks and localised doming of the sample. Observing these ion irradiation-induced processes using in situ TEM reveals previously unknown details of the sequence of microstructural developments and physics driving these phenomena. A mechanistic model consistent with the microstructural changes observed is presented
    • 

    corecore