3,870 research outputs found

    Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathematical model and its implications on hormesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the present work, we describe a group of anomalous dose-response (DR) profiles and develop a dynamic model that is able to explain them. Responses were obtained from conventional assays of three antimicrobial agents (nisin, pediocin and phenol) against two microorganisms (<it>Carnobacterium piscicola </it>and <it>Leuconostoc mesenteroides</it>).</p> <p>Results</p> <p>Some of these anomalous profiles show biphasic trends which are usually attributed to hormetic responses. But they can also be explained as the result of the time-course of the response from a microbial population with a bimodal distribution of sensitivity to an effector, and there is evidence suggesting this last origin. In light of interest in the hormetic phenomenology and the possibility of confusing it with other phenomena, especially in the bioassay of complex materials we try to define some criteria which allow us to distinguish between <it>sensu stricto </it>hormesis and biphasic responses due to other causes. Finally, we discuss some problems concerning the metric of the dose in connection with the exposure time, and we make a cautionary suggestion about the use of bacteriocins as antimicrobial agents.</p> <p>Conclusions</p> <p>The mathematical model proposed, which combines the basis of DR theory with microbial growth kinetics, can generate and explain all types of anomalous experimental profiles. These profiles could also be described in a simpler way by means of bisigmoidal equations. Such equations could be successfully used in a microbiology and toxicology context to discriminate between hormesis and other biphasic phenomena.</p

    Critical Langevin dynamics of the O(N)-Ginzburg-Landau model with correlated noise

    Full text link
    We use the perturbative renormalization group to study classical stochastic processes with memory. We focus on the generalized Langevin dynamics of the \phi^4 Ginzburg-Landau model with additive noise, the correlations of which are local in space but decay as a power-law with exponent \alpha in time. These correlations are assumed to be due to the coupling to an equilibrium thermal bath. We study both the equilibrium dynamics at the critical point and quenches towards it, deriving the corresponding scaling forms and the associated equilibrium and non-equilibrium critical exponents \eta, \nu, z and \theta. We show that, while the first two retain their equilibrium values independently of \alpha, the non-Markovian character of the dynamics affects the dynamic exponents (z and \theta) for \alpha < \alpha_c(D, N) where D is the spatial dimensionality, N the number of components of the order parameter, and \alpha_c(x,y) a function which we determine at second order in 4-D. We analyze the dependence of the asymptotic fluctuation-dissipation ratio on various parameters, including \alpha. We discuss the implications of our results for several physical situations

    Thermodynamic entropy of a many body energy eigenstate

    Full text link
    It is argued that a typical many body energy eigenstate has a well defined thermodynamic entropy and that individual eigenstates possess thermodynamic characteristics analogous to those of generic isolated systems. We examine large systems with eigenstate energies equivalent to finite temperatures. When quasi-static evolution of a system is adiabatic (in the quantum mechanical sense), two coupled subsystems can transfer heat from one subsystem to another yet remain in an energy eigenstate. To explicitly construct the entropy from the wave function, degrees of freedom are divided into two unequal parts. It is argued that the entanglement entropy between these two subsystems is the thermodynamic entropy per degree of freedom for the smaller subsystem. This is done by tracing over the larger subsystem to obtain a density matrix, and calculating the diagonal and off-diagonal contributions to the entanglement entropy.Comment: 18 page

    Nonadditive entropy for random quantum spin-S chains

    Full text link
    We investigate the scaling of Tsallis entropy in disordered quantum spin-S chains. We show that an extensive scaling occurs for specific values of the entropic index. Those values depend only on the magnitude S of the spins, being directly related with the effective central charge associated with the model.Comment: 5 pages, 7 figures. v3: Minor corrections and references updated. Published versio

    Estudio Hidrogeoquimico De Las Áreas Termales Del Complejo Volcánico Copahue-Caviahue

    Get PDF
    Hydrogeochemical study on Thermal areas of the Copahue-Caviahue Volcanic Complex The hydrothermal system hosted in the Copahue- Caviahue Volcanic Complex consists of different geothermal areas around the Copahue volcano, whose last eruptive cycle started on December 22 of 2012. This work presents new data from the samplings of November 2012 and march 2013 in Las Maquinas, Las Maquinitas, villa de Copahue and Chancho-Có areas. These acid-sulfate and steam heated waters, presented changes in their SO4-2 concentrations, especially in Las Maquinas and Las Maquinitas areas. Meanwhile, SO4-2/Cl- ratios presented a strong decrease in the samples from November 2012, regarding the samples from 2013. These values were corrected by the seasonal effect, and the observed differences remained. Rare Earth elements compositions on waters from these hotsprings are also presented

    HDX-guided EPR spectroscopy to interrogate membrane protein dynamics

    Get PDF
    This project was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) grant (BB/S018069/1) to C.P., who also acknowledges support from the Wellcome Trust (WT) (219999/Z/19/Z) and the Chinese Scholarship Council (CSC) in the form of studentships for B.J.L. and B.W., respectively. A.N.C. is a Sir Henry Dale Fellow jointly funded by the WT and the Royal Society (220628/Z/20/Z). Funding from the BBSRC (BB/M012573/1) enabled the purchase of mass spectrometry equipment.Solvent accessibilities of and distances between protein residues measured by pulsed-EPR approaches provide high-resolution information on dynamic protein motions. We describe protocols for the purification and site-directed spin labeling of integral membrane proteins. In our protocol, peptide-level HDX-MS is used as a precursor to guide single-residue resolution ESEEM accessibility measurements and spin labeling strategies for EPR applications. Exploiting the pentameric MscL channel as a model, we discuss the use of cwEPR, DEER/PELDOR, and ESEEM spectroscopies to interrogate membrane protein dynamics. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022).Publisher PDFPeer reviewe

    DMRG studies of critical SU(N) spin chains

    Full text link
    The DMRG method is applied to integrable models of antiferromagnetic spin chains for fundamental and higher representations of SU(2), SU(3), and SU(4). From the low energy spectrum and the entanglement entropy, we compute the central charge and the primary field scaling dimensions. These parameters allow us to identify uniquely the Wess-Zumino-Witten models capturing the low energy sectors of the models we consider.Comment: 14 pages, 8 figures; final version, to appear in Ann. Phy

    Holographic evolution of the mutual information

    Get PDF
    We compute the time evolution of the mutual information in out of equilibrium quantum systems whose gravity duals are Vaidya spacetimes in three and four dimensions, which describe the formation of a black hole through the collapse of null dust. We find the holographic mutual information to be non monotonic in time and always monogamous in the ranges explored. We also find that there is a region in the configuration space where it vanishes at all times. We show that the null energy condition is a necessary condition for both the strong subadditivity of the holographic entanglement entropy and the monogamy of the holographic mutual information.Comment: 32 pages, 16 figure

    Renormalization Group Functions for Two-Dimensional Phase Transitions: To the Problem of Singular Contributions

    Full text link
    According to the available publications, the field theoretical renormalization group (RG) approach in the two-dimensional case gives the critical exponents that differ from the known exact values. This fact was attempted to explain by the existence of nonanalytic contributions in the RG functions. The situation is analysed in this work using a new algorithm for summing divergent series that makes it possible to analyse dependence of the results for the critical exponents on the expansion coefficients for RG functions. It has been shown that the exact values of all the exponents can be obtained with a reasonable form of the coefficient functions. These functions have small nonmonotonities or inflections, which are poorly reproduced in natural interpolations. It is not necessary to assume the existence of singular contributions in RG functions.Comment: PDF, 11 page

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint
    corecore