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1 Introduction

Entanglement entropy is a measure of the quantum entanglement in systems with many

degrees of freedom which has been object of intense investigation in condensed matter,

quantum information and quantum gravity.

Given a system whose total Hilbert space H can be written as a direct product

H = HA ⊗ HB and whose state is characterized by the density matrix ρ, one can de-

fine the reduced density matrix ρA ≡ TrBρ by tracing over the degrees of freedom of

B. Then, the entanglement entropy SA is the corresponding Von Neumann entropy

SA = −TrA(ρA log ρA). The situation mostly studied in the literature is when A is given

by a spatial region and B is its complement. In this case the entanglement entropy is

also called geometric entropy and SA behaves according to an area law : in d > 1 spatial

dimensions we have SA ∝ Area(∂A)/εd−1 + . . . , where ε is the UV cutoff of the theory

and the dots represent terms of higher order in ε [1]. In two spacetime dimensions the

divergence is logarithmic and more quantitative analysis has been performed for conformal

field theories, where the symmetry provides powerful computational techniques. For these

theories, when A is given by an interval of length ` in an infinite line and the tempera-

ture is zero, we have the famous result SA = (c/3) log(`/ε) + c′1, where c is the central

charge and c′1 is a constant [2–4] (see [5] for a recent review). The most useful method

to get SA is the so called replica trick, which consists in computing the Renyi entropies

S
(n)
A ≡ (1 − n)−1 log TrρnA for integer n. The entanglement entropy is then obtained as

SA = −∂nTrρnA|n=1.
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For quantum field theories with a holographic dual, the prescription to compute SA
in the boundary theory through a bulk computation has been conjectured in [6, 7] for

static backgrounds and then generalized to stationary and time dependent geometries

in [8] (see [9] for a review). The proposal of [6, 7] satisfies many properties and also

important inequalities of the entanglement entropy (the simplest of them is the strong

subadditivity) [10–12]. Nevertheless, a proof for this formula is not known [13, 14].

Interesting insights in the structure of entanglement can be obtained by considering

two disjoint regions, namely A = A1 ∪ A2 with A1 ∩ A2 = ∅ [15–18]. In this case the

most interesting quantity to study is the mutual information I(A1, A2) ≡ SA1 + SA2 −
SA1∪A2 , which has the nice property that the leading divergence due to the area law

cancels. The Renyi mutual information has been analytically computed for some simple

two dimensional conformal field theories like the free compactified boson [17] and the

Ising model [18], and it has been shown that it encodes all the data of the theory (all

the conformal dimensions of the primaries and their correlation functions) in contrast

with the entanglement entropy of a single interval which contains only the central charge.

Unfortunately, the analytic continuation that allows to obtain I(A1, A2) is not known in

general but only in some limiting regimes. Detailed studies of I(A1, A2) for spin chain

models have also been done [19–22].

The holographic formula of [6, 7] for static backgrounds has been applied for disjoint

regions [14, 23, 24] and a qualitative disagreement with respect to the expectations from the

simple two dimensional conformal field theories mentioned above has been found. Indeed

the holographic mutual information displays a continuos transition with discontinuous first

derivative from zero to positive values as the two regions get closer. This could be explained

through the fact that the holographic formula holds for large c and it should be corrected

in order to recover the results obtained for the models whose central charges are of the

order one. Nevertheless the holographic formula of [6, 7] and its generalization for time

dependent backgrounds [8] are believed to be correct for large c and we will employ this

prescription in our analysis.

The entanglement entropy is a very important quantity to study in order to understand

the physics out of equilibrium and the processes of thermalization. In particular, one is in-

terested in the unitary time evolution of the entanglement entropy when the system starts

from a state which is not an eigenstate of the Hamiltonian of the system. This occurs for

instance when a system is prepared in an eigenstate of the corresponding Hamiltonian and

suddenly a tunable parameter of the Hamiltonian (e.g. the magnetic field) is changed (global

quench). Then the system evolves unitarily accordingly with the new Hamiltonian starting

from a state which is not one of its eigenstates. Another interesting situation is when the

system is prepared in the ground state of two decoupled parts which are joined together

at t = 0 and then the whole system unitarily evolves through the translationally invari-

ant Hamiltonian (local quench). These situations have been studied for two dimensional

systems by employing conformal field theory techniques and spin chains models [25–29].

Nevertheless, there are still many open problems. For instance, contrary to what happens

for classical systems [30, 31], the renormalization procedure is not well understood when

the translation invariance in the time direction is broken.

– 2 –
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Thermalization processes have also been widely considered from the holographic point

of view (see [32] for a review). For instance, the holographic counterpart of the unitary

evolution of a system towards a stationary state is a gravitational collapse whose final state

is a black hole. In this process both the initial and the final states are thermal and the

holographic entanglement entropy can be computed through the prescription of [8].

The Vaidya metrics (see e.g. [33]) are simple backgrounds realizing this setup, but

there are also alternative holographic models [34, 35]. They are solutions of the Einstein

equations with negative cosmological constant and a non trivial energy momentum tensor

containing a mass function, constrained by the null energy condition, which describe the

formation of a black hole through the collapse of a shell of null dust. The null geodesics in

these geometries have been studied in [36] but here we are interested in the spacelike ones,

which occur in the computation of the holographic entanglement entropy [8, 37, 38]. The

Vaidya metrics are simplifications of more general models considered e.g. in [39] (tensionful

shell) and [40]. Other holographic thermalization setup have also been studied [34]. The

study of the holographic entanglement entropy in Vaidya backgrounds is usually numerical

but recently an analytic computation has been done for the limiting regime of thin shell

in three spacetime dimensions [41, 42]. We will largely employ this result in our analysis

because it allows to explore a larger range of parameters. The holographic analysis of the

two point functions in these dynamical geometries has been carried out in [41–43].

In this paper we study the holographic entanglement entropy in three and four dimen-

sional Vaidya backgrounds. In section 2 we introduce the metrics and the corresponding

holographic entanglement entropy for a single region in the boundary theory. In section 3

we study the holographic mutual information and its transition curves in the configuration

space. In section 4 we explore the relation between the null energy condition for the Vaidya

metrics and the strong subadditivity for the holographic entanglement entropy. In section 5

we extend the analysis performed in the previous sections to the holographic tripartite in-

formation in order to verify the monogamy of the holographic mutual information in Vaidya

spacetimes and study how this property is influenced by the null energy condition.

Note added. While we were completing the writing of this paper, [44] appeared and it

has a substantial overlap with our results.

2 Holographic entanglement entropy for Vaidya geometries

In this section we introduce the Vaidya metrics in d+1 dimensions (subsection 2.1) and we

describe some known results about the holographic entanglement entropy in these back-

grounds (subsection 2.2). In subsection 2.3 we focus on the three dimensional case because

it is the simplest to study and some analytical results have recently been found [41, 42]

which will be widely employed in the remaining part of the paper.
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2.1 Vaidya metrics

The d+ 1 dimensional Vaidya metrics in Poincaré coordinates read

ds2 =
l2

z2

[
−
(
1−m(v)zd

)
dv2 − 2dzdv + d~x2

]
(2.1)

(we set 8πG
(d+1)
N = 1) where ~x = {x1, . . . , xd−1} are the spatial boundary coordinates. The

Ricci scalar of (2.1) is R = −(d + 1)d/l2. The metric (2.1) is a solution of the Einstein

equations in presence of matter

Gµν + Λgµν = Tµν Λ = −d(d− 1)

2l2
(2.2)

where the energy momentum tensor has only one non vanishing component

Tvv =
d− 1

2
zd−1∂vm(v) . (2.3)

The metric (2.1) describes the formation of a black hole through the collapse of null dust,

which is characterized by the Tµν just introduced. It is important to observe that the

translational invariance along the directions contained in ~x is preserved at any time. This

is a key feature of the setup characterizing global quenches in the boundary theory.

In processes of gravitational collapse, it is not yet understood how to characterize the

formation of a black hole through local time evolution. To this purpose, some general-

izations of the concept of horizon have been proposed, and, in our backgrounds we can

distinguish between two horizons, the event and the apparent horizon [45–47]. The appar-

ent horizon is the boundary of the trapped surfaces associated to a given foliation. For

the metrics (2.1) a foliation which preserves the translation invariance in the directions

of ~x is given by v = const and z = const. The location of the apparent horizon of (2.1)

reads [8, 37]

za =
1

m(v)1/d
. (2.4)

Instead, the event horizon is given by

dze
dv

= −1−m(v)zde
2

. (2.5)

When the mass profile m(v) is constant m(v) = M , the metric (2.1) describes the geometry

of the Schwarzschild black hole with planar horizon. This can be clearly seen through the

following change of coordinates

v = t+ p(z) p′(z) = − 1

1−Mzd
(2.6)

which allows to write (2.1) as

ds2 =
l2

z2

[
−
(
1−Mzd

)
dt2 +

dz2

1−Mzd
+ d~x2

]
(2.7)
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Figure 1. The function (2.9) for different values of the thickness av and M = 1. The dashed curve

is a step function and corresponds to the limiting regime of thin shell av → 0.

i.e. the usual form for a Schwarzschild black hole of mass M in the Poincaré coordinates.

For l = 1 the Hawking temperature of this black hole is given by TH = dM1/d/(4π). It

is also straightforward to check that for m(v) = 0 identically the metric (2.1) describes

AdSd+1 in the Poincaré coordinates

ds2 =
l2

z2
(
− dt2 + dz2 + d~x2

)
t = v + z . (2.8)

This tells us that the Vaidya metric (2.1) is asymptotically AdSd+1.

The formation of the Schwarzschild black hole (2.7) from AdSd+1 is described by

considering a function m(v) which interpolates between 0 and the finite value M > 0 in an

strictly increasing way. The profile for m(v) is usually chosen to be

m(v) = M
1 + tanh(v/av)

2
. (2.9)

Given this m(v), the metric (2.1) describes a background which evolves from pure planar

AdSd+1 at early times to Schwarzchild black brane with mass M at late times because of

an infalling shell of null dust. The parameter av determines the time scale of the transition

between these two regimes, since it parameterizes the thickness of the shell which falls along

v = 0. The mass function (2.9) is shown in figure 1. In the limiting case av → 0, the mass

profile m(v) becomes a step function Mθ(v) and the infalling shell describes a shock wave.

This limit is very interesting because it captures the essential physics of the problem and

one can hope to find analytic solutions for the quantities considered. For the holographic

entanglement entropy in three spacetime dimensions this has been done in [41, 42] and we

will largely employ this result.

An important inequality to impose on the energy momentum tensor Tµν in (2.2)

to guarantee the positivity of the energy density is the null energy condition, namely

TµνN
µNν > 0 for any null vector Nµ [45, 46]. This inequality has been employed to study

the c theorems from the holographic point of view [48, 49] and their generalizations in

presence of boundaries [50–53]. For the energy momentum tensor (2.3), imposing the null

energy condition means

∂vm(v) > 0 (2.10)

which is clearly satisfied by the profile (2.9). In section 4 and 5 we consider mass profiles

violating this condition and the effect of this violation on the holographic entanglement

entropy.

– 5 –
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2.2 Holographic entanglement entropy

For static spacetimes like AdSd+1 (2.8) and the Schwarzschild black hole (2.7), the pre-

scription to obtain the entanglement entropy SA = −Tr(ρA log ρA) in the boundary theory

through a holographic computation in the bulk has been proposed in [6, 7]. It reads

SA =
Area(γA)

4G
(d+1)
N

(2.11)

where G
(d+1)
N is the Newton constant for the d + 1 dimensional bulk and γA is defined

as the minimal surface among the spatial ones which extend into the bulk and share the

boundary with A, i.e. ∂γA = ∂A (γA is homologous to A). Thus, γA is a codimension

two surface living on the t = const slice and has minimal area. Since γA lives in an

asymptotically AdSd+1 space and it reaches its boundary, placed at z = 0 in the Poincaré

coordinates, Area(γA) is infinite and therefore it must be regularized by introducing a small

cutoff ε > 0 in the holographic direction, namely the restriction z > ε is imposed during

the bulk computation. The series expansion of SA in ε depends on d, and one of the first

checks of (2.11) was that this expansion reproduces in the holographic way the leading UV

divergence of the entanglement entropy as computed in field theory with other methods.

In particular, for d > 2, the leading divergence of SA is proportional to Area(∂A)/εd−2,

with a non universal coefficient [1] (this is the so called area law). For d = 2, when

the boundary CFT is two dimensional and the spatial region A is a segment of length `

(thus ∂A is made by two points), the entanglement entropy SA diverges logarithmically

with a universal coefficient given by the central charge of the theory [2–4]. Besides these

fundamental checks, it has been shown that the holographic proposal (2.11) satisfies the

strong subadditivity condition [11] and other more complicated inequalities characterizing

the entanglement entropy [12], which will be discussed in section 4 and 5.

The proposal (2.11) for static backgrounds has been generalized to time dependent

geometries in [8]. In these cases SA is still given by (2.11) but with γA obtained as an

extremal surface, namely as the saddle point of the proper area functional. This proposal

is covariantly well defined and reduces to the previous one when the spacetime is static.

Let us explain it in details for the Vaidya d+ 1 dimensional spacetimes (2.1).

We consider as d−1 dimensional spatial region A in the boundary theory a rectangular

strip parameterized by x1 ∈ (−`/2, `/2) and x2, . . . xd−1 ∈ (0, `⊥), at fixed value of the

boundary time coordinate t. This choice is less symmetric than the case of A given by a

ball, but a crucial simplification occurs in this case.

According to the proposal of [8], the holographic entanglement for this spatial re-

gion A is given by the area of the extremal surface γA whose profile is most conveniently

specified by v ≡ v(x1) and z ≡ z(x1) (we are assuming that γA is translationally invari-

ant in the other boundary coordinates x2, . . . xd−1 parameterizing A), with the following

boundary conditions

v(−`/2) = v(`/2) = t z(−`/2) = z(`/2) = 0 . (2.12)

With these boundary conditions, the boundary of γA coincides with the boundary of A

along the boundary temporal evolution. Since x1 is the relevant independent variable, we

– 6 –
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will denote it by x in the following. The area of such spacelike surface (thus the determinant

of the induced metric under the square root must be taken with the positive sign) is given

by the following functional

Area(γA) ≡ Ad ≡ ld−1 2`d−2⊥

∫ `
2

0

1

zd−1

√
1−

[
1−m(v)zd

]
(v′)2 − 2v′z′ dx (2.13)

where ′ ≡ d/dx and where we exploit the fact that z(x) and v(x) are symmetric under

reflection about a plane, which we take to be x = 0. This consideration about parity

determines the factor 2 and the integration extrema in (2.13).

The area functional (2.13) is the one we have to extremize in order to get the codi-

mension two surface γA and hence to compute the holographic entanglement entropy for

the time dependent Vaidya spaces through (2.11) [8]. In other words, γA is the solution

to the two equations of motion of (2.13). Since the integrand in (2.13) does not contain x

explicitly, we have the following conservation equation(z∗
z

)2(d−1)
= 1−

[
1−m(v)zd

]
(v′)2 − 2v′z′ (2.14)

where z∗ = z(0) is the maximum value of z(x), which is characterized by z′ = v′ = 0. This

conservation law is what makes the rectangular shape of A simpler than the circular one.

The two equations of motion obtained by minimizing the functional (2.13) read[
1−m(v)zd

]
v′′ + z′′ − ∂vm(v)

2
zd(v′)2 − dm(v)zd−1z′v′ = 0 (2.15)

z v′′ − d− 2

2
m(v)zd(v′)2 + (d− 1)

[
(v′)2 + 2v′z′ − 1

]
= 0 . (2.16)

By taking the derivative w.r.t. x of the conservation equation (2.14) and using one of

these two equations of motion, one obtains the other one. Thus, it is sufficient to consider

only (2.14) and e.g. (2.16) to find v(x) and z(x).

Given a solution (v(x), z(x)) of the equations of motion, its area can be computed by

evaluating the integral (2.13) on it. Using (2.14), this area can be written as follows

Ad = ld−1 2`d−2⊥

∫ `
2

0

zd−1∗
z2(d−1)

dx . (2.17)

As discussed above, this integral is divergent because the spacetime we are dealing with,

being asymptotically AdSd+1, is non compact and the spatial surface γA we are considering

reaches its boundary (see the boundary conditions (2.12)).

The divergence of Ad can be obtained by studying the same problem in AdSd+1 in the

standard way [7]. Subtracting this divergence we obtain the finite term of the area which

is the main quantity we are interested in. For d > 2 we have

Ad,reg ≡ 2ld−1 `d−2⊥ lim
η→ 0+

(∫ `
2
−η

0

zd−1∗
z2(d−1)

dx− 1

(d− 2) εd−2

)
≡ ld−1 `d−2⊥ Ld,reg (2.18)

0†In all the plots of this paper the numerical values of the parameter characterizing the different curves

are evenly spaced.
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Figure 2. Finite term of the holographic entanglement entropy for the Vaidya metric in three

dimensions (see (2.11) and (2.18) up to a factor), with m(v) given by (2.9) [8, 37]. On the left,

L2,reg(`, t) for different values† of boundary time t, increasing from the red curve to the blue one,

at a fixed value of av. On the right, L2,reg(`, av) at a fixed value of t and different values of the

thickness av, which increases going from the blue curve to the red one. In both plots, the black

curves correspond to the limiting regimes of AdS3 (bottom curve, from (2.24)) and of the BTZ blak

hole (top curve, from (2.24)), while the dashed curves are in the thin shell limit av = 0.

t = 1.0 ¸ 5.0

av = 0.50

0 5 10 15 20

-4

-2

0

2

4
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10

{

L
3,

re
g

Figure 3. Finite term of the holographic entanglement entropy for the Vaidya metric in four

dimensions (proportional to L3,reg(`, t)), with m(v) given by (2.9), fixed av and different boundary

times t, increasing from the red curve to the blue one. The black curves correspond to the limiting

regimes of AdS4 (bottom curve from (2.20)) and of the Schwarzschild black hole in four dimensions

(top curve).

where ε ≡ z(`/2 − η) is the UV cutoff in the boundary theory. Notice that in this case

we need to subtract just one diverging term to regularize Ad. This is a feature of the

strip; indeed when the region A is a circle there are more terms to subtract to make the

area finite [7].

In order to find the solution of (2.14) and (2.16) satisfying the boundary condi-

tions (2.12), first we exploit the reflection symmetry about x = 0 and solve the Cauchy

problem whose initial conditions are given by

z(0) = z∗ v(0) = v∗ . (2.19)
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Then, we shoot in the variables z∗, v∗ to impose (2.12).1 It turns out that the points

at which the solution reaches the boundary become increasingly sensitive to the initial

conditions and to the accuracy of the integration as either d or ` increase. As a consequence,

it becomes more and more difficult to impose (2.12). This technical difficulty limits the

range of parameters we are able to explore for d > 2. Once the solution is found, the

implementation of the numerical integration and limit in (2.18) is quite straightforward.

In figure 2 and 3 we show respectively L2,reg (three dimensional Vaidya) and L3,reg (four

dimensional Vaidya) as functions of ` and for different values of the two other important

parameters involved in our problem: the boundary time t and the thickness of the shell av.

The three dimensional case deserves a separated discussion (see subsection 2.3) because it

is the simplest situation and therefore some analytic results can be found [41, 42]. Notice

that the main qualitative features of the plots in figure 2 and 3 are independent of the

number of dimensions. The black curves represent the limiting regimes, which are AdSd+1

in the early times (bottom curve) and the d + 1 dimensional Schwarzschild black hole at

late times (top curve). For generic d > 2 the result for AdSd+1 is known [7]

Ld,reg

∣∣∣
AdSd+1

= −(2
√
π)d−1

d− 2

[
Γ( d

2(d−1))

Γ( 1
2(d−1))

]d−1
1

`d−2
. (2.20)

Unfortunately Ld,reg for the d+1 dimensional Schwarzschild black hole is not known. Very

few analytic results are available for minimal surfaces in four and higher dimensional black

holes but the curves for Ld,reg have been studied [24, 54].

At any intermediate, finite and fixed boundary time t during the black hole formation,

we can observe from figure 2 and 3 that Ld,reg(`, t) goes over the Schwarzschild black hole

curve for small ` and, at some point (which depends on t), it leaves from it to adopt an

AdSd+1 like behavior shifted vertically. Indeed, at any finite time, the shell is fixed in some

region of the bulk, and we have AdSd+1 geometry inside the shell and a Schwarzschild black

hole outside, with the thickness of the transient region proportional to av. For small values

of `, the extremal surface stays completely outside the shell, and far from it. Therefore

it feels only the Schwarzschild black hole geometry. As ` increases, the extremal surface

begins to extend in the region inside the shell, and therefore to feel the AdSd+1 part of the

geometry. This makes Ld,reg deviate from the Schwarzschild behavior. When ` is very large,

a big part of the extremal surface is inside the shell and therefore its length is determined

by AdSd+1, explaining the asymptotic behavior of the curves in figure 2 and 3 for large

`. The vertical shift in this regime is due to the part of the surface which is close to the

boundary: being outside the shell, it feels the Schwarzschild black hole geometry and it

provides a larger contribution to Ld,reg than the AdSd+1 geometry. From the plot on the

right in figure 2, we can observe that, as the thickness av decreases, Ld,reg reproduces the

Schwarzschild black hole result for a larger range of ` and also that the vertical shift for

large values of ` w.r.t. the AdSd+1 curve decreases.

1This approach is different from the one used in [37], where shooting takes place from the boundary. We

favored shooting from x = 0 because it is a regular point of the solution (v(x), z(x)).

– 9 –



J
H
E
P
0
1
(
2
0
1
2
)
1
0
2

At this point we find it useful to have a look to the shape of the extremal surfaces,

which is shown in figure 4 for the case of two disjoint regions in the boundary, and will be

studied in section 3. The extremal surfaces go backward in the bulk time direction v and,

around v = 0, they penetrate into the shell, probing the AdSd+1 geometry inside [37].

2.3 Three dimensional case and thin shell limit

The three dimensional Vaidya geometry (d = 2) is the simplest situation and consequently

very useful study, in order to get some physical intuition and more analytical results [8,

37, 41, 42] that will be helpful in the higher dimensional case. Moreover, the CFT on the

boundary theory is two dimensional, and the powerful methods developed for these class

of models lead to important results [2–4], which are very helpful to test the holographic

techniques.

For a two dimensional boundary theory, the region A is simply a one dimensional

segment of length ` at fixed boundary time t. The extremal surface we are looking for is

given by the geodesic connecting the two extrema of this segment and extending in the bulk.

The Vaidya geometry (2.1) for d = 2 interpolates between AdS3 in Poincaré coordinates

and the BTZ black hole of [55]. By employing r ≡ 1/z as holographic coordinate, the

equations (2.14) and (2.16) become respectively [8, 37]

r4

r2∗
= −

[
r2 −m(v)

]
(v′)2 + 2 r′v′ + r2 (2.21)

and

r v′′ − 2 r′v′ + r2
[

(v′)2 − 1
]

= 0 . (2.22)

The first important feature of the three dimensional case is the leading divergence in the

expansion of the entanglement entropy SA, which is not power like but logarithmical [2–4].

Roughly, this could be justified by observing that in the two dimensional boundary theory

there is no “area law” behavior because the ∂A is made by two points and it has null

measure. In three dimensions the regularized area (2.18) coincides with the regularized

length of the geodesic

L2,reg ≡ lim
η→ 0+

(
2

∫ `
2
−η

0

z∗
z2
dx+ 2 log ε

)
ε ≡ z(`/2− η) (2.23)

where ε > 0 is the UV cutoff of the holographic direction. The limiting regimes at early

and late times are respectively AdS3 (bottom black curve in figure 2) and BTZ (top black

curve), whose regularized lengths read [6, 7]

L2,reg

∣∣∣
AdS3

= 2 log ` L2,reg

∣∣∣
BTZ

= 2 log

[
βH
π

sinh

(
π`

βH

)]
(2.24)

where βH ≡ 1/TH = 2π/
√
M for l = 1. By employing the well known Brown-Henneaux

central charge c = 3l/(2G
(3)
N ) [56] for asymptotically AdS3 spaces and the lengths (2.24)

for the geodesics in AdS3 and in the BTZ black hole, in [6, 7] it was checked that the

holographic prescription (2.11) reproduces the expressions for the entanglement entropy of
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a single interval of length ` in a two dimensional CFT with central charge c defined on an

infinite line at T = 0 and T > 0 respectively [2–4]

SA

∣∣∣
T =0

=
c

3
log

(
`

ε

)
SA

∣∣∣
T > 0

=
c

3
log

[
β

πε
sinh

(
π`

β

)]
. (2.25)

Here β ≡ 1/T and the second expression in (2.25) reduces to the first one when β → +∞,

as expected. The same happens in (2.24) for M → 0.

Besides AdS3 and the BTZ black hole, there is another limiting regime of the Vaidya

background in three dimensions where the holographic entanglement entropy has been

computed analytically [41, 42]: the infinitely thin shell limit, defined as the case in which

the thickness of the shell vanishes av → 0. In this limit the metric is (2.1), with the mass

profile given by a step function m(v) = M θ(v) at v = 0, the non vanishing component Tvv
of the energy-momentum tensor is proportional to a delta function δ(v) and the infalling

shell represents a shock wave. The resulting geometry is given by a planar black brane

(a BTZ black hole with a planar horizon) outside the shock wave and an AdS3 region

inside the shock wave. The geodesics in both these regimes are known analytically. The

geodesics entering inside the shell in the full shock wave geometry are piecewise curves

made by joining the BTZ geodesic outside the shell with the AdS3 geodesic inside. The

actual prescription for joining them is described in [41, 42].

The length of these geodesics is then given by the sum of the three pieces: the first

one going from one extremum of A to the shell in the BTZ geometry, the second one inside

the shell connecting two junction points of the shell at the same z but different x (AdS3)

and a third one going from this other point of the shell to the other extremum of A on the

boundary, again in the BTZ geometry (see figure 4).

Denoting by rH the position of the horizon of the BTZ geometry outside the shell, the

regularized length of the geodesics entering into the shell can be written as [41, 42]

L2,reg

∣∣∣
thin shell

= 2 log

(
sinh(rH t)

rH s(`, t)

)
(2.26)

where the function s = s(`, t) ≡ sin θ ∈ [0, 1] with θ ∈ [0, π/2] can be extracted from

` =
1

rH

[
2 cos θ

ρ sin θ
+ log

(
2(1 + cos θ)ρ2 + 2ρ sin θ − cos θ

2(1 + cos θ)ρ2 − 2ρ sin θ − cos θ

)]
(2.27)

with ρ defined as follows

ρ ≡ 1

2

(
coth(rH t) +

√
coth2(rH t)−

2 cos θ

1 + cos θ

)
. (2.28)

In order to plot L2,reg as function of ` and of the boundary time t, we need both

L2,reg|BTZ (2.24) and L2,reg|thin shell (2.26). In fact, for small values of ` the geodesic is outside

the shell and L2,reg is given by L2,reg|BTZ. As ` increases, at some point the geodesic enters

into the shell and for ` larger than this value L2,reg is given by L2,reg|thin shell. From (2.27)
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one can observe that, for any fixed boundary time t, the function ` decreases as θ goes from

0 to π/2. Thus, the critical value of ` from which we have to start using L2,reg|thin shell is

`
∣∣
θ=π/2

=
1

rH
log

(
ρ |θ=π/2 + 1

ρ |θ=π/2 − 1

)
=

1

rH
log

(
coth(rH t) + 1

coth(rH t)− 1

)
= 2t . (2.29)

Given a boundary time t, this is the value of ` after which the geodesic enters into the

shell. In figure 2, the av = 0 limit we are discussing is represented by the dashed curves.

The relation (2.29) can be checked on those plots, since the dashed curve characterized

by t deviates from the BTZ continuous black curve at ` = 2t. This is the relation found

in [25] for two dimensional CFT models between the duration of the linear increasing of

the entanglement entropy after a global quench and the size ` of the spatial interval A,

which lead the authors to suggest the quasiparticles picture.

3 Holographic mutual information

In this section we consider the holographic mutual information for three and four dimen-

sional Vaidya metrics, employing also the analytic solution for the thin shell limit of the

three dimensional case. We numerically compute its dependence from the size and the dis-

tance of the strips and also study the transition curves in the configuration space, finding

that a time independent region exists where the holographic mutual information vanishes

at all times.

When the boundary region A we are interested in is made by two disjoint regions

A = A1 ∪ A2 with A1 ∩ A2 = ∅, the situation becomes more complicated and also more

interesting. The most important quantity to consider in this case is the mutual information

I(A1, A2) ≡ SA1 + SA2 − SA1∪A2 (3.1)

because in this linear combination the leading divergence due to the area law cancels. The

quantity I(A1, A2) measures the classical and quantum correlation between A1 and A2.

Within the context of two dimensional CFT, the Renyi entropies S
(n)
A1∪A2

≡ (1 −
n)−1 log TrρnA1∪A2

(for interger n > 2) have been computed for the free compactified bo-

son [17] and for the Ising model [18]. These results have been checked against existing

numerical data on spin chains [16, 20]. Unfortunately, the analytic continuation of these

quantities for n → 1, which is needed to find the mutual information through derivation

SA1∪A2 = − ∂nTrρnA1∪A2

∣∣
n=1

, is still unknown for the general expressions, but it has been

done for some limiting regimes of the parameters like the decompactification regime for

the free boson (when the field takes values on the whole real line) [17] or when the two

intervals are very far apart [18]. The main quantitative lesson one learns from these results

is that the Renyi entropies, or equivalently the Renyi mutual information I(n)(A1, A2),

which is defined in the obvious way by combining the Renyi entropies as done in (3.1) for

the mutual information, encodes all the data of the CFT. In other words, TrρnA1∪A2
does

not contain only the central charge c, like SA for one interval, but also all the conformal

dimensions and all the OPE coefficients of the theory.
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Figure 4. Geodesics configuration for the holographic mutual information at the transition point

for three dimensional Vaidya geometry (d = 2) with M = 1 in (2.9). The total length of the

geodesics for the connected configuration (red) and the disconnected one (blue) is the same. In the

upper plots av = 0.5 while in the bottom ones av → 0 (thin shell limit). The boundary time is

t = 7 (see the intersection of the curves with the horizontal axis in the plots on the right). The

z axis has been compactified using the arctan function. The green geodesics represent the mixed

configuration, which is suboptimal. Notice that they do not intersect, as can be clearly seen from

the plot on the right, top line.

From the AdS/CFT point of view, it is natural to study the holographic mutual in-

formation, which is defined like in (3.1) with SA given by the holographic formula (2.11),

as a further test of the holographic prescription (2.11) for the entanglement entropy. It

is known [14, 24] that the holographic mutual information displays a continuos transition

from zero to positive values with a discontinuous first derivative which is not observed

in the simple CFT models considered so far [17, 18]. This feature is believed to be a

large c effect.

Given the two disconnected regions A1 and A2 in the boundary, there are three con-

figurations of two surfaces extending in the bulk whose boundaries coincide with ∂A =

∂A1 ∪ ∂A2: the first is simply the union of the two surfaces characterizing SA1 and SA2

(which bounds two disconnected volumes and hence it will be referred to as “disconnected”

configuration). The second one is the “connected” configuration, given by a bridge con-

necting A1 and A2 through the bulk (bounding a single connected volume in the bulk). The

third configuration is composed by the extremal surface connecting the first extrema of the

regions (let us assume for the moment we have strips) and the one connecting the second

ones. We will denote this case as “mixed” configuration. In this mixed configuration, for a
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Figure 5. Holographic mutual information I(`0, `1, `1) in terms of `0 for Vaidya metrics in three

(plots on the left, infinitely thin shell regime) and four dimensions (plots on the right) in the bulk.

Different curves are characterized by the boundary time t, whose value increases going from the red

curves to the blue ones with ∆t = 1 and within the range indicated. The black curves correspond to

AdSd+1 (top curve) and Schwarzschild black hole (bottom curve). The transition of the holographic

mutual information is continuos with a discontinuous first derivative.

static background, the extremal surfaces intersect, but for a dynamical background this is

not generally true (see the set of green geodesics in figure 4). Also, for two disjoint circular

regions in a 2+1 dimensional boundary, this type configuration does not occur at all. A

similar mixed configurations of surfaces also occurs in the proof of the strong subadditivity

for the holographic entanglement entropy [11]. Since they do not always intersect for time

dependent backgrounds, the proof cannot be extended to the dynamical case in a straight-

forward way. In our case, since Ad,reg is an increasing function of the size of A at any fixed

time t (see figure 2 and 3) we can claim that this mixed configuration is always subopti-

mal with respect to the disconnected one (see also the upper line of figure 13). Thus, the

regularized area entering in the holographic computation of SA1∪A2 reads

Ad,reg = min
(
Ad,reg

∣∣
connected

,Ad,reg
∣∣
disconnected

)
. (3.2)

Notice that both configurations display the same UV divergence which cancels in the linear

combination (3.1). In three dimensional backgrounds (d = 2), the lengths of the geodesics

are involved in (3.2).

It is straightforward to notice that, when the disconnected configuration is minimal,

the holographic mutual information is zero, while it is positive in the other case. Moreover,

when A1 and A2 are very far apart from each other, the disconnected configuration is always

minimal. Thus, considering a configuration space which describes all the possible sizes and

the relative distance between A1 and A2, there must be some region of this space where

the “connected” configuration is minimal and some other region where, instead, the “dis-

connected” configuration is minimal. The corresponding holographic mutual information

is zero and positive respectively. The curve in the configuration space which characterizes

this transition in the configuration space is given by the following equation

Ad,reg
∣∣
connected

= Ad,reg
∣∣
disconnected

. (3.3)
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Figure 6. Holographic mutual information I(`0, `1, `1) as function of `1 at fixed `0 for Vaidya

metrics in three (plots on the left, infinitely thin shell regime) and four dimensions (plots on the

right) in the bulk. The other parameters are the same ones employed in figure 5.

This equation is not easy to solve and must be studied case by case. The examples of

AdSd+1 and of the charged black hole in four dimensions have been considered in [14, 24].

Here we study this equation for the Vaidya metrics (2.1) in three and four dimensions.

Let us first consider the holographic mutual information I(`0, `1, `2) (see (3.1)) for the

Vaidya metrics (2.1) in three and four dimensions with the mass profile given by (2.9).

This quantity depends on many variables and our analysis is mainly numerical. We take

equal strips `2 = `1 for our plots unless indicated otherwise.

In figure 5 and 6 we show the dependence of I(`0, `1, `1) from the distance `0 between

the intervals and the size `1 respectively. The continuos black curves represent the corre-

sponding quantities in the limiting regimes of AdSd+1 and Schwarzschild black hole (BTZ

black hole in three dimensions), while the colored ones are characterized by intermediate

boundary times, as indicated in the plot. Notice that the qualitative features of the curve

do not change with the number of dimensions. In general we can clearly observe the tran-

sition of the mutual information from positive values to zero when `0 increases at fixed size

`1 (figure 5) and from zero to positive values as `1 increases at fixed separation `0 (figure 6).

This transition is continuos with a discontinuous first derivative and unfortunately we do

not have a clear understanding of it. We recall that the holographic mutual information

is positive when the connected configuration is favored. When we plot a family of curves

parameterized by the boundary time t, the common feature one observes is that the bigger

t is, the larger is the range of variables where the curve characterized by t reproduces the

corresponding black hole result. Then, for any finite t at some point the curve deviates

from the black hole behavior and tends asymptotically to the AdSd+1 behavior, shifted by

a constant.

In three dimensions (d = 2) we can take advantage of the fact that the exact solution

is known in the thin shell limit av → 0 (see (2.26)) [41, 42] and working with the analytic

solution allows us to extend the range of variables that we can explore.
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Figure 7. Holographic mutual information I(`0, `1, `1) as function of the boundary time t at fixed

`1. The different curves are characterized by different values of `0 which increase going from the

top curve to the bottom one. As in the previous figures, we show the d = 2 case on the left and the

d = 3 case on the right. For a fixed value of `1, varying `0 three different behaviors are observed.

As for the dependence on the boundary time t of the holographic mutual information

I(`0, `1, `1), this is shown in figure 7 for different values of the separation `0 between the

two strips and a fixed value of their size `1 in three dimensions (plot on the left) and in

four dimensions (plot on the right). From these plots we observe that, at a fixed of `1,

varying the separation `0 between the strips four different behaviors are observed. For `0
very large I(`0, `1, `1) is zero at all times. Decreasing `0 (i.e. going from the bottom to the

top curves in figure 7) we find that I(`0, `1, `1) is zero at t = 0, then it becomes positive for

a finite range of t and then it vanishes again. Decreasing further `0 the holographic mutual

information starts positive at t = 0 but then it vanishes at some time. For even smaller

`0, I(`0, `1, `1) is positive for any boundary time t, that is, the connected configuration is

always favored.

In order to describe these four regimes from another point of view, we find it useful to

study the transition curve of I(`0, `1, `2) in the configuration space given by `2, `1 and `0.

That is, we find the family of curves parameterized by t which solves the equation (3.3).

These transition curves are shown in figure 8, 9 (three dimensional case) and 10 (four

dimensional case).

We set `2 = ω`1 for some finite ω > 0 and then consider the space (`1, `0). In figure 8

we display the three dimensional background for some av > 0 and ω = 1. In the plot

on the right the av dependence is show at fixed t. The dashed curves correspond to the

av → 0 limit and are obtained through the analytic solution of [41, 42]. The main feature

we notice is that it is possible to draw a critical curve ˆ̀
0(`1) which is independent of the

time t such that for any configuration specified by a point above this curve the holographic

mutual information is zero at all times. This critical curve is above the transition curve

of AdS3 and it depends on av. The region below it and above the AdS3 transition curve

becomes larger as av becomes smaller, as can be observed from the plot on the right in

figure 8. In figure 9 we consider the transition curves for the analytic solution in the av → 0
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Figure 8. Transition point of the holographic mutual information I(`0, `1, `1) for the three dimen-

sional Vaidya metric in the configuration space (`1, `0). The black curves represent the limiting

regimes of AdS3 (top curve, given by (3.6) at ω = 1) and BTZ (bottom curve, given by (3.10) at

ω = 1). On the left we plot the transition point for different times (increasing as we go from the red

the blue curve) and thickness av = 1 (the dashed curves represent the thin shell limit av = 0). On

the right, the transition point in the configuration space is plotted at a fixed time t = 4 for various

values of the thickness av in (2.9): from av = 0 (dashed curve) to av = 3 (red curve). There is a

whole region of the configuration space where the holographic mutual information is zero for any

boundary time.

limit, in order to extend the range of the configuration space (`1, `0) and also to study the

dependence on ω, which is equal to 1 on the left and 2 on the right. Comparing the two

plots we can clearly see the linear behavior of the critical curve for large `1 and notice that

it depends also on ω.

In figure 10 we consider the four dimensional background for ω = 1: the qualitative

features are the same described above, but numerical difficulties restrict the configuration

space we are able to explore.

3.1 Limiting regimes in three dimensions

Here we discuss the analytic expressions of the transition curves for the limiting regimes

of the black hole formation process in three dimensions, namely AdS3 for early times and

the BTZ black hole in the late times (black curves in figure 5, 6, 8 and 9).

The boundary theory is two dimensional and the two spatial regions A1 and A2 at

t = const are intervals whose lengths are respectively `1 = x21 and `2 = x43 (we adopt the

notation xij ≡ xi− xj). The separation length is `0 = x32 and therefore `1 + `2 + `0 = x41.

The transition of the holographic mutual information for AdS3 has been studied in [14].

Introducing the harmonic ratio for the four extrema of the two intervals

x ≡ x12 x34
x13 x24

=
`1`2

(`1 + `0)(`2 + `0)
(3.4)
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Figure 9. Transition point of the holographic mutual information I(`0, `1, ω`1) in the configuration

space (`1, `0) for the three dimensional Vaidya metric in the thin shell limit. The analytic solution

allows to extend the range of the parameters (see also figure 8). We give the curves for different

boundary times which increase from the red to the blue curve. On the left we set ω = 1 while

on the right ω = 2. The curve above which the holographic mutual information vanishes for any

boundary time depends on ω.
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Figure 10. Transition point of the holographic mutual information I(`0, `1, `1) for the four dimen-

sional Vaidya metric in the configuration space (`1, `0) at different boundary times which increase

going from the red to the blue curve. The black curves represent the limiting regimes of AdS4 (top

curve) and Schwarzschild black hole (bottom curve). Also in four dimensions there is a curve above

which the holographic mutual information is zero for any boundary time.

and employing the first formula in (2.24), the holographic mutual information of two dis-

joint intervals for AdS3 reads [14]

I(A1, A2) =


0 x < 1/2

c

3
log

(
`1`2

`0(`1 + `2 + `0)

)
=
c

3
log

(
x

1− x

)
x > 1/2

(3.5)
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where we recall that c = 3l/(2G
(3)
N ) [56]. The transition point x = 1/2 corresponds to the

solution of `1`2/[`0(`1 + `2 + `0)] = 1, namely when the argument of the logarithm in (3.5)

is equal to 1. Parameterizing `2 as `2 = ω`1 with ω > 0, the equation x = 1/2 becomes a

second order equation for `0 (see (3.4)) with only one positive solution

`0 =
1 + ω

2

(√
4ω

(1 + ω)2
+ 1− 1

)
`1 . (3.6)

This curve is a line in the plane (`1, `0) passing through the origin whose angular coefficient

depends on ω. For ω = 1 it becomes `0 = (
√

2− 1)`1 and this case is displayed in figure 8

and 9 (plot on the left). In plot on the right of figure 9 we set ω = 2.

The limiting regime al late times is the BTZ black hole. By employing the second for-

mula in (2.24), one finds that the equation (3.3) for the transition curve in the configuration

space given by `2, `1 and `0 can be written as follows

sinh(π`1/βH) sinh(π`2/βH)

sinh(π`0/βH) sinh(π(`1 + `2 + `0)/βH)
= 1 . (3.7)

Introducing ω through `2 = ω`1 as above and using the addition formulas for the hyperbolic

functions, the equation (3.7) becomes

sinh2

(
π`0
βH

)[
B(`1, ω) + C(`1, ω) coth

(
π`0
βH

)]
= 1 (3.8)

where we have defined

B(`1, ω) ≡ coth

(
π`1
βH

)
coth

(
πω`1
βH

)
+ 1 C(`1, ω) ≡ coth

(
π`1
βH

)
+ coth

(
πω`1
βH

)
.

(3.9)

Expressing the hyperbolic functions in their exponential form, the equation (3.8) becomes

a second order equation in terms of e2π`0/βH and its positive root provides `0 in terms of

`1 and ω. The result reads

`0 =
βH
2π

log

B(`1, ω) + 2 +
√

4
[
1 +B(`1, ω)

]
+ C(`1, ω)2

B(`1, ω) + C(`1, ω)

 . (3.10)

In figure 8 and 9 this curve is the black one below all other. The curve (3.10) passes

through the origin (`1, `0) = (0, 0) and it always stays below the line (3.6). Moreover, the

line (3.6) is tangent to (3.10) at the origin and this provides a check of (3.10) because for

small `1 and finite ω (which implies small `2 as well) the minimal curves remain close to

the boundary and therefore only the asymptotic geometry of BTZ, which is AdS3, matters.

For any finite ω > 0, the curve (3.10) tends asymptotically to a horizontal line `0 = ˜̀
0

when `1 is large. In this limit both disjoint interval are large while the ratio between them,

being given by ω, is kept fixed. Quantitatively, since for `1 → +∞ we have B(`1, ω) → 2

and C(`1, ω)→ 2, the asymptotic value ˜̀
0 reads

˜̀
0 =

βH
π

log
√

2 (3.11)

and it is independent of ω. This means that in the BTZ background, when the separation

`0 is larger than ˜̀
0, the holographic mutual information is zero for any `1 and `2.
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Figure 11. Regularized length Lreg for three dimensional Vaidya metric when the null energy

condition is violated: a change of concavity is manifest in both cases. The mass profiles used are

shown above and they are m(v) = M
2 [2 + tanh((v − v0/2)/av)− tanh((v + v0/2)/av)] on the right

and m(v) = M
2 [1− tanh(v/av)] on the left, with M = 1, av = 0.1, v0 = 10.

4 Strong subadditivity and null energy condition

In this section we explore the relation between the null energy condition for the Vaidya

metrics and the strong subadditivity condition, which is an important inequality satisfied

by the entanglement entropy. We find that a violation of the null energy condition leads

to a violation of strong subadditivity.2

Consider a quantum system that is partitioned into three or more subsystems, i.e. its

Hilbert space H can be written as H = ⊗iHi, and let us denote by ρi1,i2,... the reduced

density matrix obtained by tracing the full density matrix of the system over all Hj with

j 6= i1, i2, . . .. It can be shown, on very general grounds, that the Von Neumann entropy

satisfies the subadditivity condition

S(ρ1) + S(ρ2) > S(ρ1,2) (4.1)

and also the following two inequalities

S(ρ1,2) + S(ρ2,3) > S(ρ2) + S(ρ1,2,3)

S(ρ1,2) + S(ρ2,3) > S(ρ1) + S(ρ3)
(4.2)

which are equivalent and known as strong subadditivity condition (see [11, 12, 57] and the

refs therein for more detailed discussions).

2We remark that this result has been independently obtained also by Robert Callan and Matthew

Headrick.
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Figure 12. Location of the transition point of I(`0, `1, `1) when the null energy condition is

violated: the curve is not monotonically increasing with `1. The mass profiles employed in the plots

are the same as in figure 11.

If the Hilbert space is partitioned into the product of the Hilbert spaces of local degrees

of freedom belonging to non intersecting regions of space A1, A2, . . ., the inequalities (4.1)

and (4.2) can be written respectively as

SA1 + SA2 > SA2∪A2 (4.3)

and

SA1∪A2 + SA2∪A3 > SA2 + SA1∪A2∪A3

SA1∪A2 + SA2∪A3 > SA1 + SA3 .
(4.4)

In one dimensional systems (or when the symmetry of the regions considered is such

that the problem is effectively one-dimensional), for a complete description, it is sufficient

to consider the entanglement entropy of an interval as a function of its length `, and the

two inequalities of the strong subadditivity are more conveniently expressed in terms of

the function S(`). The first inequality in (4.4) states that the function S(`) is concave, and

the second that it is non decreasing.

In section 2.1 we mentioned (see (2.10)) that for the Vaidya metrics (2.1) the condition

m′(v) > 0 guarantees that the null energy condition is satisfied. By choosing a mass func-

tion that does not monotonically increase with v, we can violate the null energy condition

and explore the consequences of this violation on the entanglement entropy. The results

are shown in figure 11 and 12.

The curves in figure 11 are not concave functions of `, but they are still non-decreasing.

Therefore only the first of the two inequalities is violated. This means that they cannot be

equivalent in this setting. In order to clarify this apparent contradiction we have to discuss

how the equivalence between the inequalities is proven, both in quantum mechanics and

holographically.

The two inequalities can be shown to be equivalent by introducing an auxiliary fourth

Hilbert space H4 such that ρ1,2,3 = Tr4|ψ〉〈ψ|, for a certain pure state |ψ〉 [57]. Then

S(ρ1,2,4) = S(ρ3) and S(ρ1,4) = S(ρ2,3) (4.5)
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and hence, if we write the first inequality for 3↔ 4, 1↔ 2

S(ρ1,2) + S(ρ1,4) > S(ρ1) + S(ρ1,2,4) (4.6)

and substitute, we get the second, and viceversa.

If one tries to replicate the argument above in the holographic setting, one encounters a

difficulty because, although we are guaranteed that it is always possible to find the Hilbert

space H4, it is not guaranteed that it will be the Hilbert space of the local degrees of

freedom of some other region of the boundary theory. However, that is the only known

kind of partitioning of the Hilbert space that allows for a holographic computation. It

turns out that, if the bulk manifold is homologous to the boundary, the problem is easily

solved: H4 can be taken to be the Hilbert space of the degrees of freedom of the region

A4 = A1 ∪A2 ∪A3, the complement of A1 ∪A2 ∪A3, because it satisfies

SA1∪A2∪A4 = SA3 and SA1∪A4 = SA2∪A3 (4.7)

which are the equivalent of (4.6).

On the other hand, if the manifold contains a black hole, the problem is more compli-

cated, because the entropy of the entire system is non-zero, and hence (4.7) do not hold.

One has to rely on the conjecture that the holographic entanglement entropy is actually

describing the entanglement entropy of a certain quantum system, and hence on the quan-

tum information proof mentioned above. If the dual geometry is sufficiently unphysical, as

is the case for when the null energy condition is violated, it may not be the holographic

description of any quantum system, and there is no a priori reason to expect that the two

inequalities should be equivalent.

In terms of the mutual information I(A1, A2) for two disjoint regions (3.1) the subad-

divity inequality (4.3) implies that

I(A1, A2) > 0 (4.8)

while the first strong subaddivity inequality (4.4) can be written as follows

I(A1, A2 ∪A3) > I(A1, A2) (4.9)

i.e., the mutual information increases as one of the two regions is enlarged while the other

one is kept fixed. Applying this inequality twice, we can also conclude that when two equal

regions are enlarged by the same quantity, the mutual information increases.

From the transition curves in figure 12, we can observe that the holographic mutual

information is not monotonically increasing with `1. This behavior is another manifestation

of the violation of the first strong subadditivity inequaliy, and has to be contrasted with

figure 8 discussed in the previous section, where we used the mass profile (2.9) (figure 1)

and the null energy condition is satisfied.

5 Holographic tripartite information and monogamy

In this section we consider the holographic tripartite information for three dimensional

Vaidya metrics and show that the monogamy of the holographic mutual information is

violated when the null energy condition is not satisfied.
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Figure 13. Schematic representations of some mixed configurations occurring in the computation of

SA1∪A2
(upper line) and SA1∪A2∪A3

(middle and bottom line). If the regularized area of the surface

homologous to a single region A is an increasing function of the size of A, then the configuration

on the left is suboptimal w.r.t. the one on the right (each line on the left should be compared with

the one on the right having the same color) and thus it does not occur in the holographic mutual

information or the holographic tripartite information.

In addition to the mutual information, another interesting quantity that can be defined

from the entanglement entropy is the tripartite information

I3(A1, A2, A3) ≡ SA1 + SA2 + SA3 − SA1∪A2 − SA1∪A3 − SA2∪A3 + SA1∪A2∪A3 (5.1)

where A1, A2 and A3 are disjoint regions. In contrast with the mutual information, this

quantity is free of divergences even when the regions share their boundary. It is a measure of

the extensivity of the mutual information; indeed, the definition (5.1) can be also written as

I3(A1, A2, A3) ≡ I(A1, A2) + I(A1, A3)− I(A1, A2 ∪A3) . (5.2)

Thus, the mutual information is extensive when I3 = 0, superextensive when I3 < 0 and

subextensive when I3 > 0. In particular, in either the extensive or the superextensive

case, namely

I(A1, A2) + I(A1, A3) 6 I(A1, A2 ∪A3) (5.3)

the mutual information is said to be monogamous. For a generic quantum system, the tri-

partite information can be positive, negative or zero, depending on the choice of the regions.

Recently it has been shown [12] that for quantum systems with a holographic dual the

tripartite information is always monogamous. As for the strong subadditivity condition, the
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Figure 14. Schematic geodesics configurations to consider in the computation of SA1∪A2∪A3
.

proof only holds in the case of static dual geometries because in dynamical backgrounds it is

not always guaranteed that the surfaces involved in the mixed configurations intersect each

other. It is therefore interesting to explore the behavior of the holographic tripartite infor-

mation in the simple dynamical backgrounds like the three dimensional Vaidya geometries.

Among the terms occurring in the definition of the holographic tripartite information,

the computation of SA1∪A2∪A3 deserves a short discussion. In one spatial dimension the

three regions are just intervals, and, according to prescription of [8] for dynamical back-

grounds, one has to find the extremal set of geodesics connecting all the extrema of the

intervals. In principle, in presence of N intervals one should compare (2N − 1)!! config-

urations (15 in our case). However, since L2,reg(`) at fixed time is an increasing function

of `, for N = 3 we are left only with the five configurations shown in figure 14, by the

argument sketched in figure 13. Thus, SA1∪A2∪A3 is given by the minimum among the

following quantities

S(`1) + S(`2) + S(`3) three disconnected volumes

S(`1 + d2 + `2) + S(d1) + S(`3)

S(`1) + S(`2 + d2 + `3) + S(d2)

S(`1 + d1 + `2 + d2 + `3) + S(d1 + `2 + d2) + S(`2)

 two disconnected volumes

S(`1 + d1 + `2 + d2 + `3) + S(d2) + S(d2) one connected volume.

(5.4)

Figure 15 displays the time dependence of the tripartite information when the intervals

have the same size `1 = `2 = `3 = 5 and are separated by the same amount d1 = d2 = `0,

with several values of `0 shown. The behavior is quite complicated and involves different
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Figure 15. Time evolution of the tripartite information for the three dimensional (d = 2) Vaidya

geometry in the thin shell limit. The three intervals have the same size `1 = `2 = `3 = 5 and

are separated by the same distance d1 = d2 = `0. The plot shows that the holographic mutual

information is always monogamous.
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Figure 16. Time evolution of the tripartite information for the three dimensional (d = 2) Vaidya

geometry when the null energy condition is violated: the mass function decreases from m(−∞) = 1

to m(+∞) = 0, according to the profile shown in figure 11. Since I3 becomes positive for certain

range of t, the monogamy of the holographic mutual information is violated.

regimes, but the quantity is always non positive, even though the geometry is not static.

At late times all curves go to zero, meaning that, in the thermal state dual to the BTZ

black hole, the holographic mutual information is extensive.

Given the results of section 4 about the relation between the strong subadditivity of

the holographic entanglement entropy and the null energy condition, we can explore the

possible relation between the monogamy of the holographic mutual information and the
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null energy condition in the same way, namely by employing mass profiles m(v) which

have m′(v) < 0 for some range of v. This is relevant because the strong subadditivity

and the monogamy are independent conditions. In figure 16 we show the time evolution

of the holographic tripartite information with the same interval configuration of figure 15

but with the mass function m(v) decreasing from M = 1 at early times (v → −∞) to

M = 0 at late times (v → +∞) according to the profile shown in figure 11 (plot on the

left). The holographic tripartite information becomes positive for certain ranges of t, telling

us that a violation of the null energy condition leads to a non monogamous holographic

mutual information.

6 Conclusions

We studied the holographic mutual information for dynamical backgrounds given by the

Vaidya metrics in three and four dimensions. We found that it is non monotonic as

function of the boundary time and its behavior depends on the configuration of the two

disjoint regions.

From the transition curves of the holographic mutual information in the configuration

space we could identify different behaviors and also find a region in the configuration space

where the holographic mutual information is zero at all times. Considering the holographic

tripartite information, we observed that the holographic mutual information is monoga-

mous also for these time dependent backgrounds in the ranges of the variables explored.

By modifying the mass profile occurring in the Vaidya metrics, we showed that the

null energy condition is a necessary condition both for the strong subadditivity of the

holographic entanglement entropy and for the monogamy of the holographic mutual in-

formation. A deeper understanding of the relation between the null energy condition

and the inequalities satisfied by the quantities defined from the holographic entanglement

entropy is needed.
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